
A Network Evolution Story:
from Communication, to Content Distribution, to Real-Time Computation

Antonia Tulino
Università degli Studi di Napoli Federico II & Tandon School of Engineering NYU

Outline
• Communication

• Content Distribution
Efficient Content Storage and Delivery
• Cache-aided coded multicast
• Distributed network compression
• Dynamic Data

• Real-time Computation
Efficient Service Configuration (Storage/Computation/Delivery)
• Network Slicing (NFV/SDN)
• Mobile Edge Computing (MEC)
• Real-time Stream processing

Information
Theory

Communication
and Coding

Theory
Network Theory Statistical

Physics

Stochastic
Optimization Random Matrix

Theory

• Jaime Llorca, Marc Roelands, Alessandra Sala, Narayan Raman, Nakjung Choi, Danny Raz (now Technion).

• Elza Erkip, Parisa Hassanzadeh.

• Giuseppe Caire (now TUB), Andreas Molisch, Mingue Ji (now Utah), Hao Feng.

• Alex Dimakis, Karthikeyan Shanmugam.

• Jianan Zhang, Abhishek Sinha, Eytan Modiano.

• Konstantinos Poularakis, Leandros Tassiula.

• Marc Barcelo, Jose Vicario, Antoni Morell

Acknowledgements

M. Weldon, “The Future X Network: A Bell Labs Perspective,” CRC PRESS, October 2015.

(5G & beyond) cloud-integrated networks will become universal general-purpose compute platforms,
where a large variety of services and applications will be deployed in the form of slices within a common
physical infrastructure taking advantage of the cloud network’s reach, elasticity, and flexibility.

CLOUD-INTEGRATED NETWORKS AS UNIVERSAL COMPUTE PLATFORMS

APP

APP

…

Programmable
Network Fabric

Core cloud Edge cloud

VF

VF

APP

APP

…

VF

VF

• Ideal for next generation
services
1) Network services

• 5G slices

Cloud Network Slice

CLOUD-INTEGRATED NETWORKS AS UNIVERSAL COMPUTE PLATFORMS

CLOUD-INTEGRATED NETWORKS AS UNIVERSAL COMPUTE PLATFORMS

VF

VF

APP

APP

…

VF

VF

VFVF

VF

• Ideal for next generation
services
1) Network services

• 5G slices

2) Automation services
Smart X, IoT

3) Augmented experience services
Virtual X, Augmented X (e.g. reality/cognition)
Immersive video
Real-time computer vision/scene analysis

Cloud Network Slice

CLOUD-INTEGRATED NETWORKS AS UNIVERSAL COMPUTE PLATFORMS

VF

VF

APP

APP

…

VF

VF

VFVF

VF

Cloud Network Slice

• Opportunities
• Users can consume

resource- and interaction-
intensive applications from
resource-limited devices

• Operators can reduce costs
and create new value-
added services

• Overall sustainability

VF

VF

APP

APP

…

Elastic Network
Resources

Elastic Cloud
Resources

VF

VF

VFVF

VF

CLOUD-INTEGRATED NETWORKS AS UNIVERSAL COMPUTE PLATFORMS

• Key enablers
- Network function virtualization (NFV)
- Software defined networking (SDN)
- Network Slicing
- Advance RAT (Turning space in bandwidth)

- Network densification,

- Massive MIMO & mmW

- D2D communications

- Cooperative information sharing (Turning Memory in bandwidth)

- Cooperative (edge) caching,

- Network coding,

- multicast transport

- Network Compression

Cloud Network Slice

Objectives
• Understand the fundamental efficiency limits of the future networked cloud
• Develop practical solutions that push the network closer to its limits

v NFV: move hardware appliances into software functions deployed
at multiple cloud locations and elastically scaled computing
resources.

v SDN: program the network in between and steer network flows
through the appropriate set of functions.

v Network slicing: create cloud network slices which are hence
elastic and programmable.

Elastically allocate both cloud (storage and computing) and network
resources according to changing demands, in order to meet service

requirements while minimizing the use of the physical
infrastructure.

• Network Densification

• Massive MIMO

• Millimeter wave (mmW)

• D2D communications

VF

VF

APP

APP

…

Elastic Network
Resources

Elastic Cloud
Resources

VF

Cloud Network Slice

VF

VFVF

VF

CLOUD-INTEGRATED NETWORKS AS UNIVERSAL COMPUTE PLATFORMS

Information
Theory Stochastic

Optimization

Estimation
Theory

Statistical
Physics

Compresive
Sensing

Random
Matrix Theory

• Key enablers
- Network function virtualization (NFV)
- Software defined networking (SDN)
- Network Slicing

- Advance RAT (Turning space in bandwidth)

- Cooperative information sharing (Turning Memory in bandwidth)

Communication

• Resource limited

• Interaction limited

TOWARDS REAL-TIME AUGMENTED COGNITION

Communication Content Distribution

• Resource limited

• Interaction limited

• Resource intensive

• Interaction limited

TOWARDS REAL-TIME AUGMENTED COGNITION

Communication Content Distribution

• Resource limited

• Interaction limited

• Resource intensive

• Interaction limited

TOWARDS REAL-TIME AUGMENTED COGNITION

Communication Content Distribution

• Resource limited

• Interaction limited

• Resource intensive

• Interaction limited

TOWARDS REAL-TIME AUGMENTED COGNITION

VF

VF

VF

VF

Real-time Computation

• Resource intensive

• Real-time interaction

Bridging the time-scale gap between information capture/sensing, analysis/processing, and delivery/consumption

Outline

• Content Distribution
Efficient Content Storage and Delivery
• Cache-aided coded multicast
• Distributed network compression
• Dynamic Data

Information
Theory

Communication
and Coding

Theory
Network Theory Statistical

Physics

Stochastic
Optimization Random Matrix

Theory

The Wireless Bottleneck

Multicast
medium

Unicast traffic

The Wireless Bottleneck

Asynchronous content reuse

Multicast
medium

Unicast traffic

Wireless edge caching

Edge Caching

FemtoCaching: Caching at the infrastructure side (SBS, Helpers)
Approaches

M: Memory at femtocaching

N: number of files

The Wireless Bottleneck

Rate ≈ Load ≈ Delay

Load =
average number of transmissions

File size

⇥

✓
N

M

◆

<latexit sha1_base64="1SEaHp+D4rVqJNXC1KhPASwq1cs=">AAACCXicbVDLSgNBEJyN7/iKevQyGIR4CbsxxHgTvXhRFPIQsiHMTnqTIbMPZnqFsOTqxV/x4kERr/6BN//GSQyixoKGoqqb7i4vlkKjbX9Ymbn5hcWl5ZXs6tr6xmZua7uho0RxqPNIRurGYxqkCKGOAiXcxApY4EloeoOzsd+8BaVFFNZwGEM7YL1Q+IIzNFInR7NurQ/IXAk+0oLrK8bTy1F6MXKV6PXxoJPL28XjquNUSnRMKuVqlTpFe4JvkidTXHVy72434kkAIXLJtG45doztlCkUXMIo6yYaYsYHrActQ0MWgG6nk09GdN8oXepHylSIdKL+nEhZoPUw8ExnwLCv/3pj8T+vlaBfbacijBOEkH8t8hNJMaLjWGhXKOAoh4YwroS5lfI+M2GgCS9rQph5eZY0SkXnsFi6LudPTqdxLJNdskcKxCFH5ISckytSJ5zckQfyRJ6te+vRerFev1oz1nRmh/yC9fYJKSuaBw==</latexit>

Load ≃

FemtoCaching: Caching at the infrastructure side (SBS, Helpers)
Approaches

Requires infrastructure nodes to grow linearly with the users.

M: Memory at femtocaching

N: number of files

The Wireless Bottleneck

Rate ≈ Load ≈ Delay

Load =
average number of transmissions

File size

⇥

✓
N

M

◆

<latexit sha1_base64="1SEaHp+D4rVqJNXC1KhPASwq1cs=">AAACCXicbVDLSgNBEJyN7/iKevQyGIR4CbsxxHgTvXhRFPIQsiHMTnqTIbMPZnqFsOTqxV/x4kERr/6BN//GSQyixoKGoqqb7i4vlkKjbX9Ymbn5hcWl5ZXs6tr6xmZua7uho0RxqPNIRurGYxqkCKGOAiXcxApY4EloeoOzsd+8BaVFFNZwGEM7YL1Q+IIzNFInR7NurQ/IXAk+0oLrK8bTy1F6MXKV6PXxoJPL28XjquNUSnRMKuVqlTpFe4JvkidTXHVy72434kkAIXLJtG45doztlCkUXMIo6yYaYsYHrActQ0MWgG6nk09GdN8oXepHylSIdKL+nEhZoPUw8ExnwLCv/3pj8T+vlaBfbacijBOEkH8t8hNJMaLjWGhXKOAoh4YwroS5lfI+M2GgCS9rQph5eZY0SkXnsFi6LudPTqdxLJNdskcKxCFH5ISckytSJ5zckQfyRJ6te+vRerFev1oz1nRmh/yC9fYJKSuaBw==</latexit>

Load ≃

Approaches

The Wireless Bottleneck

D2D Caching: content replication and multi-hop.

M: Memory at user device

N: number of files
Rate ≈ Load ≈ Delay

Load =
average number of transmissions

File size

⇥

✓
N

M

◆

<latexit sha1_base64="1SEaHp+D4rVqJNXC1KhPASwq1cs=">AAACCXicbVDLSgNBEJyN7/iKevQyGIR4CbsxxHgTvXhRFPIQsiHMTnqTIbMPZnqFsOTqxV/x4kERr/6BN//GSQyixoKGoqqb7i4vlkKjbX9Ymbn5hcWl5ZXs6tr6xmZua7uho0RxqPNIRurGYxqkCKGOAiXcxApY4EloeoOzsd+8BaVFFNZwGEM7YL1Q+IIzNFInR7NurQ/IXAk+0oLrK8bTy1F6MXKV6PXxoJPL28XjquNUSnRMKuVqlTpFe4JvkidTXHVy72434kkAIXLJtG45doztlCkUXMIo6yYaYsYHrActQ0MWgG6nk09GdN8oXepHylSIdKL+nEhZoPUw8ExnwLCv/3pj8T+vlaBfbacijBOEkH8t8hNJMaLjWGhXKOAoh4YwroS5lfI+M2GgCS9rQph5eZY0SkXnsFi6LudPTqdxLJNdskcKxCFH5ISckytSJ5zckQfyRJ6te+vRerFev1oz1nRmh/yC9fYJKSuaBw==</latexit>

Load ≃

Approaches

The Wireless Bottleneck

D2D Caching: content replication and multi-hop.

Requires no infrastructure, but very hard to implement
• no good D2D standard in place,
• coordination across a large network

M: Memory at user device

N: number of files
Rate ≈ Load ≈ Delay

Load =
average number of transmissions

File size

⇥

✓
N

M

◆

<latexit sha1_base64="1SEaHp+D4rVqJNXC1KhPASwq1cs=">AAACCXicbVDLSgNBEJyN7/iKevQyGIR4CbsxxHgTvXhRFPIQsiHMTnqTIbMPZnqFsOTqxV/x4kERr/6BN//GSQyixoKGoqqb7i4vlkKjbX9Ymbn5hcWl5ZXs6tr6xmZua7uho0RxqPNIRurGYxqkCKGOAiXcxApY4EloeoOzsd+8BaVFFNZwGEM7YL1Q+IIzNFInR7NurQ/IXAk+0oLrK8bTy1F6MXKV6PXxoJPL28XjquNUSnRMKuVqlTpFe4JvkidTXHVy72434kkAIXLJtG45doztlCkUXMIo6yYaYsYHrActQ0MWgG6nk09GdN8oXepHylSIdKL+nEhZoPUw8ExnwLCv/3pj8T+vlaBfbacijBOEkH8t8hNJMaLjWGhXKOAoh4YwroS5lfI+M2GgCS9rQph5eZY0SkXnsFi6LudPTqdxLJNdskcKxCFH5ISckytSJ5zckQfyRJ6te+vRerFev1oz1nRmh/yC9fYJKSuaBw==</latexit>

Load ≃

Cache-Aided Coded Multicast (CCM):

Question:
Can we achieve scalability with finite infrastructure and
no D2D communication?

Yes we can!

Main Idea:
• leverages side information at wireless edge caches to

efficiently serve jointly multiple unicast demands via common
multicast transmissions,

• leads to load reductions that are proportional to the
aggregate cache size.

The Wireless Bottleneck

U1

A B

Cache-Aided Coded Multicasting

1 file Stored at each user

Requested files

B A

B2 A1

Source
N=2 files

K=2 users

A1
B1

U2

A2
B2

Cache-Aided Coded Multicast
Source
N files

Fractional Cooperative Caching (Cache Encoder)
• Split files into F packets and store them strategically

K users

Cache
M files

 
A1

B1

C1

U1

A1

B1

C1

U2

A1

B1

C1

UK

Caching PhaseDelivery Phase

Coded Multicast
• Coded multicast transmission simultaneously serve

multiple distinct requests via index coding

Fractional Cooperative Caching (Cache Encoder)
• Split files into F packets and store them strategically

Coded Multicast
• Coded multicast transmission simultaneously serve

multiple distinct requests via index coding

Cache-Aided Coded Multicast
Source
N files

K users

Cache
M files

 
A1

B1

C1

U1

A1

B1

C1

U2

A1

B1

C1

UK

Normalized user’s cache size

Think of as a constantµ =
M

N
=

cache size

num. of files
<latexit sha1_base64="VOfmDEXe6WuspkvCpvKM+tIR4aQ=">AAACKHicbZDLSgMxFIYzXmu9VV26CRbBVZmpgm7Eohs3SgWrQqeUTHrGhuYyJBmxDvM4bnwVNyKKuPVJTOssvP0Q+PjPOZycP0o4M9b3372JyanpmdnSXHl+YXFpubKyemFUqim0qOJKX0XEAGcSWpZZDleJBiIiDpfR4GhUv7wBbZiS53aYQEeQa8liRol1VrdyEIp0P4w1odlJnp3mBYciUrcZJbQP2LA7yPPCkqmoYRXjmHEweV7uVqp+zR8L/4WggCoq1OxWnsOeoqkAaSknxrQDP7GdjGjLKIe8HKYGEkIH5BraDiURYDrZ+NAcbzqnh2Ol3ZMWj93vExkRxgxF5DoFsX3zuzYy/6u1UxvvdTImk9SCpF+L4pRjq/AoNdxjGqjlQweEaub+immfuKSsy3YUQvD75L9wUa8F27X62U61cVjEUULraANtoQDtogY6Rk3UQhTdo0f0gl69B+/Je/Pev1onvGJmDf2Q9/EJK+yn2w==</latexit>

Fractional Cooperative Caching (Cache Encoder)
• Split files into F packets and store them strategically

Coded Multicast
• Coded multicast transmission simultaneously serve

multiple distinct requests via index coding

Cache-Aided Coded Multicast
Source
N files

m/n Mm

m
Load

In the relevant regime of KM ≫ N (i.e. Kµ≫ 1)

≃ Θ(1/µ) ≃ O(1)K(1� µ)

1 +Kµ
<latexit sha1_base64="P6eKnqJRp3h3dtbZfDmB1Pzj5/M=">AAACAnicbZDLSsNAFIYn9VbrLepK3AwWoSKWpAq6LLoRuqlgL9CEMplO2qEzSZiZCCUEN76KGxeKuPUp3Pk2TtostPWHgY//nMOZ83sRo1JZ1rdRWFpeWV0rrpc2Nre2d8zdvbYMY4FJC4csFF0PScJoQFqKKka6kSCIe4x0vPFNVu88ECFpGNyrSURcjoYB9SlGSlt988DxBcJJo2KfOTw+SRP7FDY0paW+Wbaq1lRwEewcyiBXs29+OYMQx5wECjMkZc+2IuUmSCiKGUlLTixJhPAYDUlPY4A4kW4yPSGFx9oZQD8U+gUKTt3fEwniUk64pzs5UiM5X8vM/2q9WPlXbkKDKFYkwLNFfsygCmGWBxxQQbBiEw0IC6r/CvEI6UyUTi0LwZ4/eRHatap9Xq3dXZTr13kcRXAIjkAF2OAS1MEtaIIWwOARPINX8GY8GS/Gu/Exay0Y+cw++CPj8wfwXpXY</latexit>

K users

Cache
M files

Load ≃

Local caching gain

Global caching gain

 
A1

B1

C1

U1

A1

B1

C1

U2

A1

B1

C1

UK

Normalized user’s cache size

Think of as a constantµ =
M

N
=

cache size

num. of files
<latexit sha1_base64="VOfmDEXe6WuspkvCpvKM+tIR4aQ=">AAACKHicbZDLSgMxFIYzXmu9VV26CRbBVZmpgm7Eohs3SgWrQqeUTHrGhuYyJBmxDvM4bnwVNyKKuPVJTOssvP0Q+PjPOZycP0o4M9b3372JyanpmdnSXHl+YXFpubKyemFUqim0qOJKX0XEAGcSWpZZDleJBiIiDpfR4GhUv7wBbZiS53aYQEeQa8liRol1VrdyEIp0P4w1odlJnp3mBYciUrcZJbQP2LA7yPPCkqmoYRXjmHEweV7uVqp+zR8L/4WggCoq1OxWnsOeoqkAaSknxrQDP7GdjGjLKIe8HKYGEkIH5BraDiURYDrZ+NAcbzqnh2Ol3ZMWj93vExkRxgxF5DoFsX3zuzYy/6u1UxvvdTImk9SCpF+L4pRjq/AoNdxjGqjlQweEaub+immfuKSsy3YUQvD75L9wUa8F27X62U61cVjEUULraANtoQDtogY6Rk3UQhTdo0f0gl69B+/Je/Pev1onvGJmDf2Q9/EJK+yn2w==</latexit>

Fractional Cooperative Caching (Cache Encoder)
• Split files into F packets and store them strategically

Coded Multicast
• Coded multicast transmission simultaneously serve

multiple distinct requests via index coding

Cache-Aided Coded Multicast
Source
N files

m/n Mm

m

(Index) Coding turns unicast traffic into
multicast traffic

Load

Index Coding
with a twist

In the relevant regime of KM ≫ N (i.e. Kµ≫ 1)

≃ Θ(1/µ) ≃ O(1)K(1� µ)

1 +Kµ
<latexit sha1_base64="P6eKnqJRp3h3dtbZfDmB1Pzj5/M=">AAACAnicbZDLSsNAFIYn9VbrLepK3AwWoSKWpAq6LLoRuqlgL9CEMplO2qEzSZiZCCUEN76KGxeKuPUp3Pk2TtostPWHgY//nMOZ83sRo1JZ1rdRWFpeWV0rrpc2Nre2d8zdvbYMY4FJC4csFF0PScJoQFqKKka6kSCIe4x0vPFNVu88ECFpGNyrSURcjoYB9SlGSlt988DxBcJJo2KfOTw+SRP7FDY0paW+Wbaq1lRwEewcyiBXs29+OYMQx5wECjMkZc+2IuUmSCiKGUlLTixJhPAYDUlPY4A4kW4yPSGFx9oZQD8U+gUKTt3fEwniUk64pzs5UiM5X8vM/2q9WPlXbkKDKFYkwLNFfsygCmGWBxxQQbBiEw0IC6r/CvEI6UyUTi0LwZ4/eRHatap9Xq3dXZTr13kcRXAIjkAF2OAS1MEtaIIWwOARPINX8GY8GS/Gu/Exay0Y+cw++CPj8wfwXpXY</latexit>

K users

Cache
M files

Load ≃

Local caching gain

Global caching gain

 
A1

B1

C1

U1

A1

B1

C1

U2

A1

B1

C1

UK

Normalized user’s cache size

Think of as a constantµ =
M

N
=

cache size

num. of files
<latexit sha1_base64="VOfmDEXe6WuspkvCpvKM+tIR4aQ=">AAACKHicbZDLSgMxFIYzXmu9VV26CRbBVZmpgm7Eohs3SgWrQqeUTHrGhuYyJBmxDvM4bnwVNyKKuPVJTOssvP0Q+PjPOZycP0o4M9b3372JyanpmdnSXHl+YXFpubKyemFUqim0qOJKX0XEAGcSWpZZDleJBiIiDpfR4GhUv7wBbZiS53aYQEeQa8liRol1VrdyEIp0P4w1odlJnp3mBYciUrcZJbQP2LA7yPPCkqmoYRXjmHEweV7uVqp+zR8L/4WggCoq1OxWnsOeoqkAaSknxrQDP7GdjGjLKIe8HKYGEkIH5BraDiURYDrZ+NAcbzqnh2Ol3ZMWj93vExkRxgxF5DoFsX3zuzYy/6u1UxvvdTImk9SCpF+L4pRjq/AoNdxjGqjlQweEaub+immfuKSsy3YUQvD75L9wUa8F27X62U61cVjEUULraANtoQDtogY6Rk3UQhTdo0f0gl69B+/Je/Pev1onvGJmDf2Q9/EJK+yn2w==</latexit>

X2

X1

Wants:X2

Has:

Minimum number of transmissions?

Source: Broadcasts to all users.

Each transmission is 1 file.

Side information allows savings

⊕ X3 Graph Coloring solution

Index Coding
Source
N files

U1 U2

X1

  U3

X2
X3

max
KP

k= 1
log R̄kmax

KP

k= 1 max
KX

k= 1

max
KP

k= 1
log R̄k

KP

k= 1

X3 X1

X3

X2

X1

Wants:X2

Has:

Minimum number of transmissions?

Source: Broadcasts to all users.

Each transmission is 1 file.

Side information allows savings

⊕ X3 Graph Coloring solutionIC is a fundamental and challenging problem
(Birk & Kol’98; Bar-Yossef et al.; Alon et al.; El Rouayheb et al.; Effros et al.; Maleki et al.)

Index Coding
Source
N files

U1 U2

X1

  U3

X2
X3

max
KP

k= 1
log R̄kmax

KP

k= 1 max
KX

k= 1

max
KP

k= 1
log R̄k

KP

k= 1

X3 X1

X3

• Maddah-Ali, and Niesen, 2012. “Fundamental limits of caching”, ArXiv.

• J. Llorca, A.M. Tulino, K. Guan, and D. Kilper, 2013 “Network-coded caching-aided multicast
for efficient content delivery”, ICC.

• M. Ji, A. M. Tulino, J. Llorca, and G. Caire, 2014 "On the average performance of caching and
coded multicasting with random demands.” SWCS.

At the beginning…

• M. Maddah-Ali, and U. Niesen, TIT 2014]: order optimal under uncoded placement.

• K. Wan, D. Tuninetti, P. Piantanida, ITW 2016]: optimality under distinct demands K ≤ N and uncoded
placement.

• M. Ji, A. M. Tulino, J. Llorca, and G. Caire, TIT 2017]: order optimal for arbitrary popularity distribution

• Q. Yu, M. A. Maddah-Ali, S. Avestimehr, TIT 2018]: optimal for uncoded placement.

• Q. Yu, M. A. Maddah-Ali, S. Avestimehr, TIT 2019]: optimal within a factor of 2 (no restriction on
placement).

Over the years…
Several optimality results

Gains of CCM unbounded for uniform distribution, M/m=1/10, n=1000 users, only 10 transmissions!

BUT Still very far from achieving these gains because of two main technical barriers
Normalized per user cache size

as a constantµ =
M

N
=

cache size

num. of files
<latexit sha1_base64="VOfmDEXe6WuspkvCpvKM+tIR4aQ=">AAACKHicbZDLSgMxFIYzXmu9VV26CRbBVZmpgm7Eohs3SgWrQqeUTHrGhuYyJBmxDvM4bnwVNyKKuPVJTOssvP0Q+PjPOZycP0o4M9b3372JyanpmdnSXHl+YXFpubKyemFUqim0qOJKX0XEAGcSWpZZDleJBiIiDpfR4GhUv7wBbZiS53aYQEeQa8liRol1VrdyEIp0P4w1odlJnp3mBYciUrcZJbQP2LA7yPPCkqmoYRXjmHEweV7uVqp+zR8L/4WggCoq1OxWnsOeoqkAaSknxrQDP7GdjGjLKIe8HKYGEkIH5BraDiURYDrZ+NAcbzqnh2Ol3ZMWj93vExkRxgxF5DoFsX3zuzYy/6u1UxvvdTImk9SCpF+L4pRjq/AoNdxjGqjlQweEaub+immfuKSsy3YUQvD75L9wUa8F27X62U61cVjEUULraANtoQDtogY6Rk3UQhTdo0f0gl69B+/Je/Pev1onvGJmDf2Q9/EJK+yn2w==</latexit>

Think ofK(1� µ)

1 +Kµ
<latexit sha1_base64="P6eKnqJRp3h3dtbZfDmB1Pzj5/M=">AAACAnicbZDLSsNAFIYn9VbrLepK3AwWoSKWpAq6LLoRuqlgL9CEMplO2qEzSZiZCCUEN76KGxeKuPUp3Pk2TtostPWHgY//nMOZ83sRo1JZ1rdRWFpeWV0rrpc2Nre2d8zdvbYMY4FJC4csFF0PScJoQFqKKka6kSCIe4x0vPFNVu88ECFpGNyrSURcjoYB9SlGSlt988DxBcJJo2KfOTw+SRP7FDY0paW+Wbaq1lRwEewcyiBXs29+OYMQx5wECjMkZc+2IuUmSCiKGUlLTixJhPAYDUlPY4A4kW4yPSGFx9oZQD8U+gUKTt3fEwniUk64pzs5UiM5X8vM/2q9WPlXbkKDKFYkwLNFfsygCmGWBxxQQbBiEw0IC6r/CvEI6UyUTi0LwZ4/eRHatap9Xq3dXZTr13kcRXAIjkAF2OAS1MEtaIIWwOARPINX8GY8GS/Gu/Exay0Y+cw++CPj8wfwXpXY</latexit>

Load ≃

Over the years…

• M. Maddah-Ali, and U. Niesen, TIT 2014]: order optimal under uncoded placement.

• K. Wan, D. Tuninetti, P. Piantanida, ITW 2016]: optimality under distinct demands K ≤ N and uncoded
placement.

• M. Ji, A. M. Tulino, J. Llorca, and G. Caire, TIT 2017]: order optimal for arbitrary popularity distribution

• Q. Yu, M. A. Maddah-Ali, S. Avestimehr, TIT 2018]: optimal for uncoded placement.

• Q. Yu, M. A. Maddah-Ali, S. Avestimehr, TIT 2019]: optimal within a factor of 2 (no restriction on
placement).

Several optimality results

• Heterogeneous Channels
– Different caches have different channels: worst cache channel

dictates the overall performance
– How to include channel coding in order to maintains the gains.

Technical Barriers
Gains of CCM theoretical unbounded

BUT Still very far from achieving these gains because of two main technical barriers

K(1� µ)

1 +Kµ
<latexit sha1_base64="P6eKnqJRp3h3dtbZfDmB1Pzj5/M=">AAACAnicbZDLSsNAFIYn9VbrLepK3AwWoSKWpAq6LLoRuqlgL9CEMplO2qEzSZiZCCUEN76KGxeKuPUp3Pk2TtostPWHgY//nMOZ83sRo1JZ1rdRWFpeWV0rrpc2Nre2d8zdvbYMY4FJC4csFF0PScJoQFqKKka6kSCIe4x0vPFNVu88ECFpGNyrSURcjoYB9SlGSlt988DxBcJJo2KfOTw+SRP7FDY0paW+Wbaq1lRwEewcyiBXs29+OYMQx5wECjMkZc+2IuUmSCiKGUlLTixJhPAYDUlPY4A4kW4yPSGFx9oZQD8U+gUKTt3fEwniUk64pzs5UiM5X8vM/2q9WPlXbkKDKFYkwLNFfsygCmGWBxxQQbBiEw0IC6r/CvEI6UyUTi0LwZ4/eRHatap9Xq3dXZTr13kcRXAIjkAF2OAS1MEtaIIWwOARPINX8GY8GS/Gu/Exay0Y+cw++CPj8wfwXpXY</latexit>

Load ≃
as a constantµ =

M

N
=

cache size

num. of files
<latexit sha1_base64="VOfmDEXe6WuspkvCpvKM+tIR4aQ=">AAACKHicbZDLSgMxFIYzXmu9VV26CRbBVZmpgm7Eohs3SgWrQqeUTHrGhuYyJBmxDvM4bnwVNyKKuPVJTOssvP0Q+PjPOZycP0o4M9b3372JyanpmdnSXHl+YXFpubKyemFUqim0qOJKX0XEAGcSWpZZDleJBiIiDpfR4GhUv7wBbZiS53aYQEeQa8liRol1VrdyEIp0P4w1odlJnp3mBYciUrcZJbQP2LA7yPPCkqmoYRXjmHEweV7uVqp+zR8L/4WggCoq1OxWnsOeoqkAaSknxrQDP7GdjGjLKIe8HKYGEkIH5BraDiURYDrZ+NAcbzqnh2Ol3ZMWj93vExkRxgxF5DoFsX3zuzYy/6u1UxvvdTImk9SCpF+L4pRjq/AoNdxjGqjlQweEaub+immfuKSsy3YUQvD75L9wUa8F27X62U61cVjEUULraANtoQDtogY6Rk3UQhTdo0f0gl69B+/Je/Pev1onvGJmDf2Q9/EJK+yn2w==</latexit>

Think of

• Coding Complexity
– Number of packets grows exponentially with number of

caches.
– How should F scale as a function of M,m,n to get these gains?

– How should F scale as a function of M,K,N to get these gains?

max
KP

k= 1
log R̄kmax

KP

k= 1 max
KX

k= 1

max
KP

k= 1
log R̄k

KP

k= 1

1 File/trans.

Take a file from
the library

Split into F packets and
place strategically +
XOR packets during delivery.

Library – N Files

Technical Barriers
• Coding Complexity

Key Question: How large F needs to be ?

as a constantµ =
M

N
=

cache size

num. of files
<latexit sha1_base64="VOfmDEXe6WuspkvCpvKM+tIR4aQ=">AAACKHicbZDLSgMxFIYzXmu9VV26CRbBVZmpgm7Eohs3SgWrQqeUTHrGhuYyJBmxDvM4bnwVNyKKuPVJTOssvP0Q+PjPOZycP0o4M9b3372JyanpmdnSXHl+YXFpubKyemFUqim0qOJKX0XEAGcSWpZZDleJBiIiDpfR4GhUv7wBbZiS53aYQEeQa8liRol1VrdyEIp0P4w1odlJnp3mBYciUrcZJbQP2LA7yPPCkqmoYRXjmHEweV7uVqp+zR8L/4WggCoq1OxWnsOeoqkAaSknxrQDP7GdjGjLKIe8HKYGEkIH5BraDiURYDrZ+NAcbzqnh2Ol3ZMWj93vExkRxgxF5DoFsX3zuzYy/6u1UxvvdTImk9SCpF+L4pRjq/AoNdxjGqjlQweEaub+immfuKSsy3YUQvD75L9wUa8F27X62U61cVjEUULraANtoQDtogY6Rk3UQhTdo0f0gl69B+/Je/Pev1onvGJmDf2Q9/EJK+yn2w==</latexit>

Think of

F = exp (Kf(µ)) = exp (⇥(K))
<latexit sha1_base64="nmgKNbhCGofN/61/p0tNNiCNY48=">AAACIHicbVDLSgNBEJz1GeNr1aOXwSAkl7CrQrwIoiBCLhESDWRDmJ30JoOzD2Z6xRD8FC/+ihcPiuhNv8ZJsodoLGgoqrrp7vITKTQ6zpc1N7+wuLScW8mvrq1vbNpb29c6ThWHBo9lrJo+0yBFBA0UKKGZKGChL+HGvz0f+Td3oLSIozoOEmiHrBeJQHCGRurYlYsTD+4TT0KAxSoNil6YlqinRK+PpSnLq/cBWbFayqyOXXDKzhh0lrgZKZAMtY796XVjnoYQIZdM65brJNgeMoWCS3jIe6mGhPFb1oOWoRELQbeH4wcf6L5RujSIlakI6VidnhiyUOtB6JvOkGFf//VG4n9eK8XguD0UUZIiRHyyKEglxZiO0qJdoYCjHBjCuBLmVsr7TDGOJtO8CcH9+/IsuT4ou4flg6ujwulZFkeO7JI9UiQuqZBTcklqpEE4eSTP5JW8WU/Wi/VufUxa56xsZof8gvX9A4giofk=</latexit>

U1 U2 UK 

as a constantµ =
M

N
=

cache size

num. of files
<latexit sha1_base64="VOfmDEXe6WuspkvCpvKM+tIR4aQ=">AAACKHicbZDLSgMxFIYzXmu9VV26CRbBVZmpgm7Eohs3SgWrQqeUTHrGhuYyJBmxDvM4bnwVNyKKuPVJTOssvP0Q+PjPOZycP0o4M9b3372JyanpmdnSXHl+YXFpubKyemFUqim0qOJKX0XEAGcSWpZZDleJBiIiDpfR4GhUv7wBbZiS53aYQEeQa8liRol1VrdyEIp0P4w1odlJnp3mBYciUrcZJbQP2LA7yPPCkqmoYRXjmHEweV7uVqp+zR8L/4WggCoq1OxWnsOeoqkAaSknxrQDP7GdjGjLKIe8HKYGEkIH5BraDiURYDrZ+NAcbzqnh2Ol3ZMWj93vExkRxgxF5DoFsX3zuzYy/6u1UxvvdTImk9SCpF+L4pRjq/AoNdxjGqjlQweEaub+immfuKSsy3YUQvD75L9wUa8F27X62U61cVjEUULraANtoQDtogY6Rk3UQhTdo0f0gl69B+/Je/Pev1onvGJmDf2Q9/EJK+yn2w==</latexit>

Think of

all original schemes number of packets grows exponentially
with number of caches

Distributed

Centralized

Le
ve

l o
f c

ac
he

 co
or

di
na

tio
n

F = exp (Kf(µ)) = exp (⇥(K))
<latexit sha1_base64="nmgKNbhCGofN/61/p0tNNiCNY48=">AAACIHicbVDLSgNBEJz1GeNr1aOXwSAkl7CrQrwIoiBCLhESDWRDmJ30JoOzD2Z6xRD8FC/+ihcPiuhNv8ZJsodoLGgoqrrp7vITKTQ6zpc1N7+wuLScW8mvrq1vbNpb29c6ThWHBo9lrJo+0yBFBA0UKKGZKGChL+HGvz0f+Td3oLSIozoOEmiHrBeJQHCGRurYlYsTD+4TT0KAxSoNil6YlqinRK+PpSnLq/cBWbFayqyOXXDKzhh0lrgZKZAMtY796XVjnoYQIZdM65brJNgeMoWCS3jIe6mGhPFb1oOWoRELQbeH4wcf6L5RujSIlakI6VidnhiyUOtB6JvOkGFf//VG4n9eK8XguD0UUZIiRHyyKEglxZiO0qJdoYCjHBjCuBLmVsr7TDGOJtO8CcH9+/IsuT4ou4flg6ujwulZFkeO7JI9UiQuqZBTcklqpEE4eSTP5JW8WU/Wi/VufUxa56xsZof8gvX9A4giofk=</latexit>

Load = O

✓
K

Kµ

◆
= O(1)

<latexit sha1_base64="O2OiX+NCK0tG9YqHx+NiXLY54Ok=">AAACDXicbVC7SgNBFJ31GeMramkzGIWkCbtR0CYQtBFSJIJ5QHYJs5PZZMjsg5m7Qlj2B2z8FRsLRWzt7fwbJ49CEw9cOJxzL/fe40aCKzDNb2NldW19YzOzld3e2d3bzx0ctlQYS8qaNBSh7LhEMcED1gQOgnUiyYjvCtZ2RzcTv/3ApOJhcA/jiDk+GQTc45SAlnq50wqu24J5ULA9SWhSS5Matv04tSUfDKFYqResYi+XN0vmFHiZWHOSR3M0erkvux/S2GcBUEGU6lpmBE5CJHAqWJq1Y8UiQkdkwLqaBsRnykmm36T4TCt97IVSVwB4qv6eSIiv1Nh3dadPYKgWvYn4n9eNwbtyEh5EMbCAzhZ5scAQ4kk0uM8loyDGmhAqub4V0yHRqYAOMKtDsBZfXiatcsk6L5XvLvLV63kcGXSMTlABWegSVdEtaqAmougRPaNX9GY8GS/Gu/Exa10x5jNH6A+Mzx9pv5p/</latexit>

Load

F = exp (Kf(µ)) = exp (⇥(K))
<latexit sha1_base64="nmgKNbhCGofN/61/p0tNNiCNY48=">AAACIHicbVDLSgNBEJz1GeNr1aOXwSAkl7CrQrwIoiBCLhESDWRDmJ30JoOzD2Z6xRD8FC/+ihcPiuhNv8ZJsodoLGgoqrrp7vITKTQ6zpc1N7+wuLScW8mvrq1vbNpb29c6ThWHBo9lrJo+0yBFBA0UKKGZKGChL+HGvz0f+Td3oLSIozoOEmiHrBeJQHCGRurYlYsTD+4TT0KAxSoNil6YlqinRK+PpSnLq/cBWbFayqyOXXDKzhh0lrgZKZAMtY796XVjnoYQIZdM65brJNgeMoWCS3jIe6mGhPFb1oOWoRELQbeH4wcf6L5RujSIlakI6VidnhiyUOtB6JvOkGFf//VG4n9eK8XguD0UUZIiRHyyKEglxZiO0qJdoYCjHBjCuBLmVsr7TDGOJtO8CcH9+/IsuT4ou4flg6ujwulZFkeO7JI9UiQuqZBTcklqpEE4eSTP5JW8WU/Wi/VufUxa56xsZof8gvX9A4giofk=</latexit>

F = exp (gf 0(µ)) = O(µg)
<latexit sha1_base64="HE5kTy0Z3Pe8fGtCrGB8s+wycb0=">AAACEHicbVBNS8NAEN34bf2qevSyWKTtpSQq6EUoCuJNBWuFJpbNdpIu3XywOxFL6E/w4l/x4kERrx69+W9Mag/a+mDg7Xsz7MxzYyk0muaXMTU9Mzs3v7BYWFpeWV0rrm9c6yhRHBo8kpG6cZkGKUJooEAJN7ECFrgSmm7vJPebd6C0iMIr7MfgBMwPhSc4w0xqF8unRzbcx7YEDys+9coVO0iq1FbC72L16Dx/3vrVQrtYMmvmEHSSWCNSIiNctIufdifiSQAhcsm0bllmjE7KFAouYVCwEw0x4z3mQyujIQtAO+nwoAHdyZQO9SKVVYh0qP6eSFmgdT9ws86AYVePe7n4n9dK0Dt0UhHGCULIfz7yEkkxonk6tCMUcJT9jDCuRLYr5V2mGMcswzwEa/zkSXK9W7P2aruX+6X68SiOBbJFtkmFWOSA1MkZuSANwskDeSIv5NV4NJ6NN+P9p3XKGM1skj8wPr4BWhia4A==</latexit>

= O

✓
K

g

◆

<latexit sha1_base64="my9F1VSPrZfi5lum073ibAa4G8g=">AAACBHicbVDLSsNAFJ34rPUVddnNYBHqpiRV0I1QdCO4sIJ9QBPKZDpJh04ezNwIJXThxl9x40IRt36EO//GaZuFth64cDjnXu69x0sEV2BZ38bS8srq2npho7i5tb2za+7tt1ScSsqaNBax7HhEMcEj1gQOgnUSyUjoCdb2hlcTv/3ApOJxdA+jhLkhCSLuc0pASz2zdIFvHcF8qDi+JDS7GWfB2JE8GMBxzyxbVWsKvEjsnJRRjkbP/HL6MU1DFgEVRKmubSXgZkQCp4KNi06qWELokASsq2lEQqbcbPrEGB9ppY/9WOqKAE/V3xMZCZUahZ7uDAkM1Lw3Ef/zuin4527GoyQFFtHZIj8VGGI8SQT3uWQUxEgTQiXXt2I6IDoM0LkVdQj2/MuLpFWr2ifV2t1puX6Zx1FAJXSIKshGZ6iOrlEDNRFFj+gZvaI348l4Md6Nj1nrkpHPHKA/MD5/ADbUl9U=</latexit>

F = exp (Kf 00 (µ)) = exp (⇥(K))
<latexit sha1_base64="eEDh2l6hyVxNo3OVJ87av/eGgsw=">AAACNHicbVDLSgMxFM34tr6qLt0Ei1g3ZUYF3QiiIEI3Fdpa6JSSSe+0wcyD5I5Yhn6UGz/EjQguFHHrN5i2g6j1QsjJOedyc48XS6HRtp+tqemZ2bn5hcXc0vLK6lp+faOuo0RxqPFIRqrhMQ1ShFBDgRIasQIWeBKuvZvzoX59C0qLKKxiP4ZWwLqh8AVnaKh2vnxx4sJdnLoSfCzSMvV3d2n2cIOEukp0e7iXXYOfZrfaA2TF8rfYzhfskj0qOgmcDBRIVpV2/tHtRDwJIEQumdZNx46xlTKFgksY5NxEQ8z4DetC08CQBaBb6WjpAd0xTIf6kTInRDpif3akLNC6H3jGGTDs6b/akPxPayboH7dSEcYJQsjHg/xEUozoMEHaEQo4yr4BjCth/kp5jynG0eScMyE4f1eeBPX9knNQ2r86LJyeZXEskC2yTYrEIUfklFySCqkRTu7JE3klb9aD9WK9Wx9j65SV9WySX2V9fgH0h6ng</latexit> Load= O

✓
K

Kµ

◆
= O(1)

<latexit sha1_base64="O2OiX+NCK0tG9YqHx+NiXLY54Ok=">AAACDXicbVC7SgNBFJ31GeMramkzGIWkCbtR0CYQtBFSJIJ5QHYJs5PZZMjsg5m7Qlj2B2z8FRsLRWzt7fwbJ49CEw9cOJxzL/fe40aCKzDNb2NldW19YzOzld3e2d3bzx0ctlQYS8qaNBSh7LhEMcED1gQOgnUiyYjvCtZ2RzcTv/3ApOJhcA/jiDk+GQTc45SAlnq50wqu24J5ULA9SWhSS5Matv04tSUfDKFYqResYi+XN0vmFHiZWHOSR3M0erkvux/S2GcBUEGU6lpmBE5CJHAqWJq1Y8UiQkdkwLqaBsRnykmm36T4TCt97IVSVwB4qv6eSIiv1Nh3dadPYKgWvYn4n9eNwbtyEh5EMbCAzhZ5scAQ4kk0uM8loyDGmhAqub4V0yHRqYAOMKtDsBZfXiatcsk6L5XvLvLV63kcGXSMTlABWegSVdEtaqAmougRPaNX9GY8GS/Gu/Exa10x5jNH6A+Mzx9pv5p/</latexit>

[Tang-Ramamoorthy ‘17, Yan et al ‘16]

Very practical schemes Exponentially smaller !!

F = exp
⇣p

Kf 00 (µ)
⌘
= exp

⇣
⇥(

p
K)

⌘

<latexit sha1_base64="o72WHeznmb3Piwxv+4XtzYUU24o=">AAACQXicbVBJSwMxFM64W7eqRy/BItZLmVFBL4IoiOBFoRt0Ssmkb9pgZjF5I5ahf82L/8Cbdy8eFPHqxbQdxe1ByMe38JLPi6XQaNsP1tj4xOTU9Mxsbm5+YXEpv7xS1VGiOFR4JCNV95gGKUKooEAJ9VgBCzwJNe/yeKDXrkFpEYVl7MXQDFgnFL7gDA3VytdPDly4iVNXgo9F6uorhelZ39/cpJ9UkFBXiU4Xt7Kr/z3ilruArPgZ/PK08gW7ZA+H/gVOBgokm/NW/t5tRzwJIEQumdYNx46xmTKFgkvo59xEQ8z4JetAw8CQBaCb6bCBPt0wTJv6kTInRDpkvydSFmjdCzzjDBh29W9tQP6nNRL095upCOMEIeSjRX4iKUZ0UCdtCwUcZc8AxpUwb6W8yxTjaErPmRKc31/+C6rbJWentH2xWzg8yuqYIWtknRSJQ/bIITkl56RCOLklj+SZvFh31pP1ar2NrGNWllklP8Z6/wDWbbB+</latexit>

[Yan et al ‘16, Shangguan et al ‘16]

Load = O(1) , then F = K is impossible !!

All these results are about constructions of RUZSA-SZEMÉREDI bipartite graphs

Caching gain = K

Caching gain = gCaching gain = K

[Hachem et al ‘17], [Lampiris et al ‘18], [Parrinello et al ‘18]

[Shanmugam, Tulino, Dimakis 2017]F = K,µ � K��(✏)
<latexit sha1_base64="1l3tWOTCHYiyRsKPrzciN8oUgpI=">AAACCnicbVDLSgNBEJyNrxhfUY9eRoMQQcNuFPQiBAURcolgHpCNYXbSSYbMzq4zs0JYcvbir3jxoIhXv8Cbf+PkcdDEgoaiqpvuLi/kTGnb/rYSc/MLi0vJ5dTK6tr6Rnpzq6KCSFIo04AHsuYRBZwJKGumOdRCCcT3OFS93uXQrz6AVCwQt7ofQsMnHcHajBJtpGZ69+q8eOj6kduBe1y8i4/cFnBNsi6EivFAHAya6Yyds0fAs8SZkAyaoNRMf7mtgEY+CE05Uaru2KFuxERqRjkMUm6kICS0RzpQN1QQH1QjHr0ywPtGaeF2IE0JjUfq74mY+Er1fc90+kR31bQ3FP/z6pFunzViJsJIg6DjRe2IYx3gYS64xSRQzfuGECqZuRXTLpGEapNeyoTgTL88Syr5nHOcy9+cZAoXkziSaAftoSxy0CkqoGtUQmVE0SN6Rq/ozXqyXqx362PcmrAmM9voD6zPH+JRmcU=</latexit>

Load  K✏
<latexit sha1_base64="OoSWH3wGobN+ehLnalnS1EZ2udM=">AAAB+XicbVBNS8NAEN34WetX1KOXxSJ4KkkV9Fj0InipYD+giWWznbRLN5u4uymU0H/ixYMiXv0n3vw3btoctPXBwOO9GWbmBQlnSjvOt7Wyura+sVnaKm/v7O7t2weHLRWnkkKTxjyWnYAo4ExAUzPNoZNIIFHAoR2MbnK/PQapWCwe9CQBPyIDwUJGiTZSz7Y9Dk/47tGDRDEei3LPrjhVZwa8TNyCVFCBRs/+8voxTSMQmnKiVNd1Eu1nRGpGOUzLXqogIXREBtA1VJAIlJ/NLp/iU6P0cRhLU0Ljmfp7IiORUpMoMJ0R0UO16OXif1431eGVnzGRpBoEnS8KU451jPMYcJ9JoJpPDCFUMnMrpkMiCdUmrDwEd/HlZdKqVd3zau3+olK/LuIooWN0gs6Qiy5RHd2iBmoiisboGb2iNyuzXqx362PeumIVM0foD6zPH8H1kxY=</latexit>

[Shanmugam, Ji, Tulino, Llorca Dimakis 2016] users are grouped

PHY: leveraging spatial multiplexing

Coding Complexity

F = exp (gf 0(µ))
<latexit sha1_base64="b769Yfw6QQXN4Ck7b/EL/Gn6cVg=">AAACB3icbVDLSgNBEJz1GeMr6lGQwSAml7AbBb0IQUE8RjAPyC5hdtKbDJl9MNMrhpCbF3/FiwdFvPoL3vwbN8keNLGgoajqprvLjaTQaJrfxsLi0vLKamYtu76xubWd29mt6zBWHGo8lKFqukyDFAHUUKCEZqSA+a6Ehtu/GvuNe1BahMEdDiJwfNYNhCc4w0Rq5w6uL2x4iGwJHha61Dsu2H5cpLYS3R4Ws+1c3iyZE9B5YqUkT1JU27kvuxPy2IcAuWRatywzQmfIFAouYZS1Yw0R433WhVZCA+aDdoaTP0b0KFE61AtVUgHSifp7Ysh8rQe+m3T6DHt61huL/3mtGL1zZyiCKEYI+HSRF0uKIR2HQjtCAUc5SAjjSiS3Ut5jinFMohuHYM2+PE/q5ZJ1UirfnuYrl2kcGbJPDkmBWOSMVMgNqZIa4eSRPJNX8mY8GS/Gu/ExbV0w0pk98gfG5w9JJZem</latexit> [Jin, Cui, Liu, and Caire. TC, 2019]

Caching gain = K1-e

[all schemes up to 2016]

as a constantµ =
M

N
=

cache size

num. of files
<latexit sha1_base64="VOfmDEXe6WuspkvCpvKM+tIR4aQ=">AAACKHicbZDLSgMxFIYzXmu9VV26CRbBVZmpgm7Eohs3SgWrQqeUTHrGhuYyJBmxDvM4bnwVNyKKuPVJTOssvP0Q+PjPOZycP0o4M9b3372JyanpmdnSXHl+YXFpubKyemFUqim0qOJKX0XEAGcSWpZZDleJBiIiDpfR4GhUv7wBbZiS53aYQEeQa8liRol1VrdyEIp0P4w1odlJnp3mBYciUrcZJbQP2LA7yPPCkqmoYRXjmHEweV7uVqp+zR8L/4WggCoq1OxWnsOeoqkAaSknxrQDP7GdjGjLKIe8HKYGEkIH5BraDiURYDrZ+NAcbzqnh2Ol3ZMWj93vExkRxgxF5DoFsX3zuzYy/6u1UxvvdTImk9SCpF+L4pRjq/AoNdxjGqjlQweEaub+immfuKSsy3YUQvD75L9wUa8F27X62U61cVjEUULraANtoQDtogY6Rk3UQhTdo0f0gl69B+/Je/Pev1onvGJmDf2Q9/EJK+yn2w==</latexit>

Think of

Technical Barriers

• Heterogeneous Channels
– Different caches have different channels: worst cache channel

dictates the overall performance
– How to include channel coding in order to maintains the gains.

• Coding Complexity
– Number of packets grows exponentially with number of

caches.
– How should F scale as a function of M,m,n to get these gains?

Gains of CCM theoretical unbounded

BUT Still very far from achieving these gains because of two main technical barriers

K(1� µ)

1 +Kµ
<latexit sha1_base64="P6eKnqJRp3h3dtbZfDmB1Pzj5/M=">AAACAnicbZDLSsNAFIYn9VbrLepK3AwWoSKWpAq6LLoRuqlgL9CEMplO2qEzSZiZCCUEN76KGxeKuPUp3Pk2TtostPWHgY//nMOZ83sRo1JZ1rdRWFpeWV0rrpc2Nre2d8zdvbYMY4FJC4csFF0PScJoQFqKKka6kSCIe4x0vPFNVu88ECFpGNyrSURcjoYB9SlGSlt988DxBcJJo2KfOTw+SRP7FDY0paW+Wbaq1lRwEewcyiBXs29+OYMQx5wECjMkZc+2IuUmSCiKGUlLTixJhPAYDUlPY4A4kW4yPSGFx9oZQD8U+gUKTt3fEwniUk64pzs5UiM5X8vM/2q9WPlXbkKDKFYkwLNFfsygCmGWBxxQQbBiEw0IC6r/CvEI6UyUTi0LwZ4/eRHatap9Xq3dXZTr13kcRXAIjkAF2OAS1MEtaIIWwOARPINX8GY8GS/Gu/Exay0Y+cw++CPj8wfwXpXY</latexit>

Load ≃
as a constantµ =

M

N
=

cache size

num. of files
<latexit sha1_base64="VOfmDEXe6WuspkvCpvKM+tIR4aQ=">AAACKHicbZDLSgMxFIYzXmu9VV26CRbBVZmpgm7Eohs3SgWrQqeUTHrGhuYyJBmxDvM4bnwVNyKKuPVJTOssvP0Q+PjPOZycP0o4M9b3372JyanpmdnSXHl+YXFpubKyemFUqim0qOJKX0XEAGcSWpZZDleJBiIiDpfR4GhUv7wBbZiS53aYQEeQa8liRol1VrdyEIp0P4w1odlJnp3mBYciUrcZJbQP2LA7yPPCkqmoYRXjmHEweV7uVqp+zR8L/4WggCoq1OxWnsOeoqkAaSknxrQDP7GdjGjLKIe8HKYGEkIH5BraDiURYDrZ+NAcbzqnh2Ol3ZMWj93vExkRxgxF5DoFsX3zuzYy/6u1UxvvdTImk9SCpF+L4pRjq/AoNdxjGqjlQweEaub+immfuKSsy3YUQvD75L9wUa8F27X62U61cVjEUULraANtoQDtogY6Rk3UQhTdo0f0gl69B+/Je/Pev1onvGJmDf2Q9/EJK+yn2w==</latexit>

Think of

X[Δ]%

dom vector (packet based) caching placement and coded
multicast scheme proposed in [?] to the case of multiple
requests according to a demand distribution, where multiple
means that each user makes L � 1 requests. The performance
metric is the average number of equivalent file transmissions.
We show that the proposed scheme is order-optimal under a
Zipf demand distribution with parameter ↵ in [0, 1). Second,
by recognizing the effect of L in the system, we introduce a
random scalar caching placement scheme, i.e., caching entire
files according to a probability distribution, and show that
when M and L is sufficiently large, the order optimality of
the shared link caching network can also be guaranteed.

II. NETWORK MODEL

We consider a network with a single source node (server)
connected to n user nodes U = {1, · · · , n} (caches) through
a shared multicast link. The source has access to the whole
content library F = {1, · · · , m} containing m files of equal
size F bits. Each user node has a cache of size M files (i.e.,
MF bits). The shared link is a deterministic channel that
transmits one file per unit time, such that all the users can
decode the same multicast codeword.

n
Wf 2 FF

2 : f 2 F

o

At each time unit (slot), each user requests a set of L
files in F . Each request is placed independently according
to a probability distribution q = (q1, . . . , qm), referred to as
the demand distribution. This is known a priori and, without
loss of generality up to index reordering, has non-increasing
components q1 � · · · � qm. Such requests form a random
matrix F of size L⇥n with columns fu = [fu,1, fu,2, · · · , fu,L]
corresponding to the requests of each user u 2 U . The
realization of F is denoted as F = [f1, f2, · · · , fn], where
fu = (fu,1, fu,2 . . . , fu,L)T. The caching problem includes
two distinct operations: the caching phase and the delivery
phase. The caching phase (cache configuration) is done a
priori, as a function of the files in the library, but does not
depend on the request matrix realization F. Then, during the
delivery phase, at each time slot, given the current request
matrix realization F, the source forms a multicast codeword
and transmits it over the shared link such that all users can
decode their requested files. Formally, we have:

Definition 1: (Caching Phase) The caching phase is a
mappin of the file library F onto the user caches. Without
loss of generality, we represent files as vectors over the binary
field F2. For each u 2 U , let �u : FmF

2 ! FMF
2 denote the

caching function of user u. Then, the cache content of user u
is given by Zu , �u(Wf : f = 1, · · · , m), where Wf 2 FF

2

denotes the f -th file in the library. ⌃
Definition 2: (Delivery Phase) At each use of the network,

a realization of the random request matrix F 2 F
L⇥n is

generated. The multicast encoder is defined by a fixed-to-
variable encoding function X : FmF

2 ⇥ F
L⇥n

! F⇤

2 (where
F⇤

2 denotes the set of finite length binary sequences), such
that X({Wf : f 2 F},F, Zu) is the transmitted codeword.

We denote by J({Wf : f 2 F},F) the length function
(in binary symbols) associated to the encoding function X .
Each user receives X({Wf : f 2 F},F) through the
noiseless shared link, and decodes its requested file Wfu,l ,
l = 1, · · · , L, as (cWfu,1 ,cWfu,2 , · · · ,cWfu,L) = �u(X, Zu,F),
where �u : F⇤

2 ⇥FMF
2 ⇥ F

L⇥n
! FLF

2 denotes the decoding
function of user u. The concatenation of 1) demand vector
generation, 2) multicast encoding and transmission over the
shared link, and 3) decoding, is referred to as the delivery
phase. ⌃

We refer to the overall content distribution scheme, formed
by both caching and delivery phases, directly as a caching
scheme, and measure the system performance in terms of the
rate during the delivery phase. In particular, we define the rate
of the scheme as

R(F) = sup
{Wf :f2F}

E[J({Wf : f 2 F},F)]

F
, (1)

where the expectation is with respect to the random request
vector.1

Consider a sequence of caching schemes defined by cache
encoding functions {Zu}, multicast coding function X , and
decoding functions {�u}, for increasing file size F =
1, 2, 3, For each F , the worst-case (over the file library)
probability of error of the corresponding caching scheme is
defined as

P (F)
e ({Zu}, X, {�u}) =

sup
{Wf :f2F}

P

[

u2U

n
�u(X,Zu,F)

6= (Wfu,1 , · · · , Wfu,L)
o⌘

. (2)

A sequence of caching schemes is called admissible if
limF!1 P (F)

e ({Zu}, X, {�u}) = 0. Achievability for our
system is defined as follows:

Definition 3: A rate R(n, m, M, L,q) is achievable for the
shared link caching network with n users, library size m, cache
capacity M , number of requests L, and demand distribution
q, if there exists a sequence of admissible caching schemes
with rate R(F) such that

lim sup
F!1

R(F)
 R(n, m, M, L,q). (3)

⌃
We let R⇤(n, m, M,q) denote the infimum (over all caching

schemes) of the achievable rates. The notion of “order-
optimality” for our system is defined as follows:

Definition 4: Let n, M, L be functions of m, such that
limm!1 n(m) = 1. A sequence of caching schemes for the
shared link caching network with n users, library size m, cache
capacity M , number of requests L, and demand distribution
q, is order-optimal if its rate R(n, m, M, L,q) satisfies

lim sup
m!1

R(n, m, M, L,q)

R⇤(n, m, M, L,q)
 ⌫, (4)

1Throughout this paper, we directly use “rate” to refer to the average rate
defined by (1) and explicitly use “average (expected) rate” if needed for clarity.S

%
Source%

Compressor%
(RAP4CIC)%

Channel%
%Encoder%
(ChEn)%

X[1]%Library%RealizaCon%
%
Scheduled%Packets%
%
Cache%Contents%
%
Channel%CondiCons%

Heterogeneous Channels

 

Source
N files

η1 ηK

η2

ηu channel rate of user u

Worst
channel

Coded
Caching

ηu = η =common channel rate

Achievable rate = η / Load

Separation Source-Channel Coding theorem:

U2U1 UK

ηu channel rate different across users

X[Δ]%

dom vector (packet based) caching placement and coded
multicast scheme proposed in [?] to the case of multiple
requests according to a demand distribution, where multiple
means that each user makes L � 1 requests. The performance
metric is the average number of equivalent file transmissions.
We show that the proposed scheme is order-optimal under a
Zipf demand distribution with parameter ↵ in [0, 1). Second,
by recognizing the effect of L in the system, we introduce a
random scalar caching placement scheme, i.e., caching entire
files according to a probability distribution, and show that
when M and L is sufficiently large, the order optimality of
the shared link caching network can also be guaranteed.

II. NETWORK MODEL

We consider a network with a single source node (server)
connected to n user nodes U = {1, · · · , n} (caches) through
a shared multicast link. The source has access to the whole
content library F = {1, · · · , m} containing m files of equal
size F bits. Each user node has a cache of size M files (i.e.,
MF bits). The shared link is a deterministic channel that
transmits one file per unit time, such that all the users can
decode the same multicast codeword.

n
Wf 2 FF

2 : f 2 F

o

At each time unit (slot), each user requests a set of L
files in F . Each request is placed independently according
to a probability distribution q = (q1, . . . , qm), referred to as
the demand distribution. This is known a priori and, without
loss of generality up to index reordering, has non-increasing
components q1 � · · · � qm. Such requests form a random
matrix F of size L⇥n with columns fu = [fu,1, fu,2, · · · , fu,L]
corresponding to the requests of each user u 2 U . The
realization of F is denoted as F = [f1, f2, · · · , fn], where
fu = (fu,1, fu,2 . . . , fu,L)T. The caching problem includes
two distinct operations: the caching phase and the delivery
phase. The caching phase (cache configuration) is done a
priori, as a function of the files in the library, but does not
depend on the request matrix realization F. Then, during the
delivery phase, at each time slot, given the current request
matrix realization F, the source forms a multicast codeword
and transmits it over the shared link such that all users can
decode their requested files. Formally, we have:

Definition 1: (Caching Phase) The caching phase is a
mappin of the file library F onto the user caches. Without
loss of generality, we represent files as vectors over the binary
field F2. For each u 2 U , let �u : FmF

2 ! FMF
2 denote the

caching function of user u. Then, the cache content of user u
is given by Zu , �u(Wf : f = 1, · · · , m), where Wf 2 FF

2

denotes the f -th file in the library. ⌃
Definition 2: (Delivery Phase) At each use of the network,

a realization of the random request matrix F 2 F
L⇥n is

generated. The multicast encoder is defined by a fixed-to-
variable encoding function X : FmF

2 ⇥ F
L⇥n

! F⇤

2 (where
F⇤

2 denotes the set of finite length binary sequences), such
that X({Wf : f 2 F},F, Zu) is the transmitted codeword.

We denote by J({Wf : f 2 F},F) the length function
(in binary symbols) associated to the encoding function X .
Each user receives X({Wf : f 2 F},F) through the
noiseless shared link, and decodes its requested file Wfu,l ,
l = 1, · · · , L, as (cWfu,1 ,cWfu,2 , · · · ,cWfu,L) = �u(X, Zu,F),
where �u : F⇤

2 ⇥FMF
2 ⇥ F

L⇥n
! FLF

2 denotes the decoding
function of user u. The concatenation of 1) demand vector
generation, 2) multicast encoding and transmission over the
shared link, and 3) decoding, is referred to as the delivery
phase. ⌃

We refer to the overall content distribution scheme, formed
by both caching and delivery phases, directly as a caching
scheme, and measure the system performance in terms of the
rate during the delivery phase. In particular, we define the rate
of the scheme as

R(F) = sup
{Wf :f2F}

E[J({Wf : f 2 F},F)]

F
, (1)

where the expectation is with respect to the random request
vector.1

Consider a sequence of caching schemes defined by cache
encoding functions {Zu}, multicast coding function X , and
decoding functions {�u}, for increasing file size F =
1, 2, 3, For each F , the worst-case (over the file library)
probability of error of the corresponding caching scheme is
defined as

P (F)
e ({Zu}, X, {�u}) =

sup
{Wf :f2F}

P

[

u2U

n
�u(X,Zu,F)

6= (Wfu,1 , · · · , Wfu,L)
o⌘

. (2)

A sequence of caching schemes is called admissible if
limF!1 P (F)

e ({Zu}, X, {�u}) = 0. Achievability for our
system is defined as follows:

Definition 3: A rate R(n, m, M, L,q) is achievable for the
shared link caching network with n users, library size m, cache
capacity M , number of requests L, and demand distribution
q, if there exists a sequence of admissible caching schemes
with rate R(F) such that

lim sup
F!1

R(F)
 R(n, m, M, L,q). (3)

⌃
We let R⇤(n, m, M,q) denote the infimum (over all caching

schemes) of the achievable rates. The notion of “order-
optimality” for our system is defined as follows:

Definition 4: Let n, M, L be functions of m, such that
limm!1 n(m) = 1. A sequence of caching schemes for the
shared link caching network with n users, library size m, cache
capacity M , number of requests L, and demand distribution
q, is order-optimal if its rate R(n, m, M, L,q) satisfies

lim sup
m!1

R(n, m, M, L,q)

R⇤(n, m, M, L,q)
 ⌫, (4)

1Throughout this paper, we directly use “rate” to refer to the average rate
defined by (1) and explicitly use “average (expected) rate” if needed for clarity.S

%
Source%

Compressor%
(RAP4CIC)%

Channel%
%Encoder%
(ChEn)%

X[1]%Library%RealizaCon%
%
Scheduled%Packets%
%
Cache%Contents%
%
Channel%CondiCons%

Heterogeneous Channels

 

Source
N files

η1 ηK

η2

ηu channel rate of user u

Worst
channel

Achievable rate = ηmin / Load

Coded
Caching

Separation Source-Channel Coding theorem:

U2U1 UK

ηu channel rate different across users

X[Δ]%

dom vector (packet based) caching placement and coded
multicast scheme proposed in [?] to the case of multiple
requests according to a demand distribution, where multiple
means that each user makes L � 1 requests. The performance
metric is the average number of equivalent file transmissions.
We show that the proposed scheme is order-optimal under a
Zipf demand distribution with parameter ↵ in [0, 1). Second,
by recognizing the effect of L in the system, we introduce a
random scalar caching placement scheme, i.e., caching entire
files according to a probability distribution, and show that
when M and L is sufficiently large, the order optimality of
the shared link caching network can also be guaranteed.

II. NETWORK MODEL

We consider a network with a single source node (server)
connected to n user nodes U = {1, · · · , n} (caches) through
a shared multicast link. The source has access to the whole
content library F = {1, · · · , m} containing m files of equal
size F bits. Each user node has a cache of size M files (i.e.,
MF bits). The shared link is a deterministic channel that
transmits one file per unit time, such that all the users can
decode the same multicast codeword.

n
Wf 2 FF

2 : f 2 F

o

At each time unit (slot), each user requests a set of L
files in F . Each request is placed independently according
to a probability distribution q = (q1, . . . , qm), referred to as
the demand distribution. This is known a priori and, without
loss of generality up to index reordering, has non-increasing
components q1 � · · · � qm. Such requests form a random
matrix F of size L⇥n with columns fu = [fu,1, fu,2, · · · , fu,L]
corresponding to the requests of each user u 2 U . The
realization of F is denoted as F = [f1, f2, · · · , fn], where
fu = (fu,1, fu,2 . . . , fu,L)T. The caching problem includes
two distinct operations: the caching phase and the delivery
phase. The caching phase (cache configuration) is done a
priori, as a function of the files in the library, but does not
depend on the request matrix realization F. Then, during the
delivery phase, at each time slot, given the current request
matrix realization F, the source forms a multicast codeword
and transmits it over the shared link such that all users can
decode their requested files. Formally, we have:

Definition 1: (Caching Phase) The caching phase is a
mappin of the file library F onto the user caches. Without
loss of generality, we represent files as vectors over the binary
field F2. For each u 2 U , let �u : FmF

2 ! FMF
2 denote the

caching function of user u. Then, the cache content of user u
is given by Zu , �u(Wf : f = 1, · · · , m), where Wf 2 FF

2

denotes the f -th file in the library. ⌃
Definition 2: (Delivery Phase) At each use of the network,

a realization of the random request matrix F 2 F
L⇥n is

generated. The multicast encoder is defined by a fixed-to-
variable encoding function X : FmF

2 ⇥ F
L⇥n

! F⇤

2 (where
F⇤

2 denotes the set of finite length binary sequences), such
that X({Wf : f 2 F},F, Zu) is the transmitted codeword.

We denote by J({Wf : f 2 F},F) the length function
(in binary symbols) associated to the encoding function X .
Each user receives X({Wf : f 2 F},F) through the
noiseless shared link, and decodes its requested file Wfu,l ,
l = 1, · · · , L, as (cWfu,1 ,cWfu,2 , · · · ,cWfu,L) = �u(X, Zu,F),
where �u : F⇤

2 ⇥FMF
2 ⇥ F

L⇥n
! FLF

2 denotes the decoding
function of user u. The concatenation of 1) demand vector
generation, 2) multicast encoding and transmission over the
shared link, and 3) decoding, is referred to as the delivery
phase. ⌃

We refer to the overall content distribution scheme, formed
by both caching and delivery phases, directly as a caching
scheme, and measure the system performance in terms of the
rate during the delivery phase. In particular, we define the rate
of the scheme as

R(F) = sup
{Wf :f2F}

E[J({Wf : f 2 F},F)]

F
, (1)

where the expectation is with respect to the random request
vector.1

Consider a sequence of caching schemes defined by cache
encoding functions {Zu}, multicast coding function X , and
decoding functions {�u}, for increasing file size F =
1, 2, 3, For each F , the worst-case (over the file library)
probability of error of the corresponding caching scheme is
defined as

P (F)
e ({Zu}, X, {�u}) =

sup
{Wf :f2F}

P

[

u2U

n
�u(X,Zu,F)

6= (Wfu,1 , · · · , Wfu,L)
o⌘

. (2)

A sequence of caching schemes is called admissible if
limF!1 P (F)

e ({Zu}, X, {�u}) = 0. Achievability for our
system is defined as follows:

Definition 3: A rate R(n, m, M, L,q) is achievable for the
shared link caching network with n users, library size m, cache
capacity M , number of requests L, and demand distribution
q, if there exists a sequence of admissible caching schemes
with rate R(F) such that

lim sup
F!1

R(F)
 R(n, m, M, L,q). (3)

⌃
We let R⇤(n, m, M,q) denote the infimum (over all caching

schemes) of the achievable rates. The notion of “order-
optimality” for our system is defined as follows:

Definition 4: Let n, M, L be functions of m, such that
limm!1 n(m) = 1. A sequence of caching schemes for the
shared link caching network with n users, library size m, cache
capacity M , number of requests L, and demand distribution
q, is order-optimal if its rate R(n, m, M, L,q) satisfies

lim sup
m!1

R(n, m, M, L,q)

R⇤(n, m, M, L,q)
 ⌫, (4)

1Throughout this paper, we directly use “rate” to refer to the average rate
defined by (1) and explicitly use “average (expected) rate” if needed for clarity.S

%
Source%

Compressor%
(RAP4CIC)%

Channel%
%Encoder%
(ChEn)%

X[1]%Library%RealizaCon%
%
Scheduled%Packets%
%
Cache%Contents%
%
Channel%CondiCons%

Heterogeneous Channels

 

Source
N files

η1 ηK

η2

ηu channel rate of user u

Worst
channel

Achievable rate = ηmin / Load

Coded
Caching

ηu = η =common channel rate

To improve performance, need for joint
source-channel coding scheme

Separation Source-Channel Coding theorem:

U2U1 UK

ü Multiple Caches divided in two classes:
• [Karamchandani-Diggavi-Caire-Shamai, 2016]

– Two links (1 & 2) between caches and source.
– One class receiving only from link 1 the other from both links cache size M.

• [Bidokhti-Wigger-Timo, 2016]
– Weak receivers with equal “large” BC erasure probabilities and cache size M.
– Strong receivers with equal “small” BC erasure probabilities with zero cache-size.
– This especially useful in a designing phase for dimensioning the caches

üGeneral Setting [Cacciapuoti-Caleffi-Ji-Llorca-Tulino, 2016]
• Channel, cache size, demand distribution, number of requested files arbitrary across users
• Random Fractional Caching
• Channel-Aware Chromatic Index Coding

Heterogeneous Channels
ü Two Caches [Asadi-Ong-Johnson, 2015]

• Capacity-memory trade off of two cache-aided receiver broadcast channel.
• Each receiver side information is part of the private message of the other.

Special settings

Extension to different network topologies
Tree Topology:
CM with routing at intermediate
nodes

Multiserver/linear network

Combination network

SHINE
(Secure Hybrid In Network caching Environment)

TU Berlin | Sekr. HFT 6 | Einsteinufer 25 | 10587 Berlin

www.mk.tu-berlin.de

Faculty of
Electrical Engineering and
Computer Systems
Department of Telecommunication
Systems

Information and Communication
Theory

Prof. Dr. Giuseppe Caire

Einsteinufer 25
10587 Berlin

Telefon +49 (0)30 314-29668
Telefax +49 (0)30 314-28320
caire@tu-berlin.de

Sekretariat HFT6
Patrycja Chudzik

Telefon +49 (0)30 314-28459
Telefax +49 (0)30 314-28320
sekretariat@mk.tu-berlin.de

Firma xy
Herrn Mustermann
Beispielstraße 11
12345 Musterstadt

Berlin, 1. Month 2014

Subject:

Text…&

Prof. Dr. Giuseppe Caire

Coded Caching for tree networks

• Tree network with intermediate routers (no intermediate node caching).

11

RC(sN/K)

p(s)

RC(M)0

Fig. 4. Concentration of the rate terms in the convex combination (4) expressing the rate of the decentralized coded caching scheme RD(M)
around the rate RC(M) of the centralized coded caching scheme. The curves are for different values of N � {23, 24, . . . , 210} with K = N
and M =

�
N . Each curve depicts p(s) versus RC(sN/K) parametrized by s � {0, 1, . . . , K}.

A. Tree Networks
The basic problem setting considered so far considers users connected to the server through a single

shared bottleneck link. We showed that the rate of our proposed algorithm over the shared link is within
a constant factor of the optimum. Here we extend this result to more general networks with tree structure
(see Fig. 5).

u

v

Fig. 5. Network with tree structure. A server containing N files of size F bits each is connected through a tree-structured network to K
users each with a cache of size MF bits. Internal nodes of the tree represent routers. In this figure, N = K = 6, and M = 1. The proposed
placement and delivery procedures together with a routing algorithm achieves the order-optimal rate over every link (u, v) of the network.

Consider a directed tree network, oriented from the root to the leaves. The server is located at the
root of the tree, and users with their caches are located at the leaves. Each internal node of the network
represents a router. The router decides what to transmit over each of its outgoing links as a function of
what it received over its single incoming link from its parent.
We again assume that the system operates in two phases. In the placement phase, the caches are

populated without knowledge of users’ future demands. In the delivery phase, the users reveal their
requests, and the server has to satisfy these demands exploiting the cached content.
For this network, we propose the following caching and routing procedures. For the placement phase,

we use the same placement procedure as in Algorithm 1. For the delivery phase, we use the two delivery
procedures detailed in Algorithm 1, but with the simplified decision rule explained in Remark 4. In other

20

Shared Caches

• Ji, M., Wong, M.F., Tulino, A.M., Llorca, J., Caire, G., Effros, M. and Langberg, M., IEEE SPAWC 2015 .

• M. Ji, A. M. Tulino, J. Llorca, G. Caire, IEEE ASILOMAR, 2015

• Kai Wan, Daniela Tuninetti, Mingyue Ji, and Pablo Piantanida, IEEE ASILOMAR, 2017

Simple achievable scheme: concatenation of classical Cache-Aided Coded Multicast (CCM) and
MDS coding combined with naive multicasting of all the library and routing (naive unicast), is
given by:

not optimal BUT completely topology-agnostic.

Recently extensions with caches at the relays

Combination network

relays with
no caches

Maximum link load = Load ≃ min

⇢
K

k
(1� µ),

K(1� µ)

r(1 +Kµ)
,
N

r

�

<latexit sha1_base64="lRufj0/SoreqbObUdisID3ASWLs=">AAACO3icbVDLSgMxFM34rPVVdekmWISKWmaqoMuiG6EgVewDOqVk0kwbmmSGJCOUYf7LjT/hzo0bF4q4dW/ajqCtBwIn59x7k3u8kFGlbfvZmptfWFxazqxkV9fWNzZzW9t1FUQSkxoOWCCbHlKEUUFqmmpGmqEkiHuMNLzB5chv3BOpaCDu9DAkbY56gvoUI22kTu4263IqXEZ8Dd3Y9SXCcSWJB0nBOXZ5dHAEUy29J7EsOIeVMf3xro2YQFfSXt8MSTq5vF20x4CzxElJHqSodnJPbjfAESdCY4aUajl2qNsxkppiRpKsGykSIjxAPdIyVCBOVDse757AfaN0oR9Ic4SGY/V3R4y4UkPumUqOdF9NeyPxP68Vaf+8HVMRRpoIPHnIjxjUARwFCbtUEqzZ0BCEJTV/hbiPTB7axJ01ITjTK8+SeqnonBRLN6f58kUaRwbsgj1QAA44A2VwBaqgBjB4AC/gDbxbj9ar9WF9TkrnrLRnB/yB9fUNqg+ssQ==</latexit>

• Hachem, Karamchandani, Diggavi, TIT 63(5), 2017,
• G. Vettigli, M. Ji, K. Shanmugan, J. Llorca, A. Tulino, G. Caire, MDPI Entropy, March 2019
• Parrinello, Unsal and Elia, arXiv:1809.09422, : 2018

Shared Caches

The goal is to minimize the worst-case load over the shared link (backhaul).

Each user receives from L distinct BSs

K(1� Lµ)

1 +Kµ
<latexit sha1_base64="tDXQLE3CUsha9hjKW/QXWKlQaX4=">AAACLXicbVBJS8NAGJ3UrdYt6tHLYBEqakmqoMeiHoR6qGAXSEKZTCft0MnCzEQoIX/Ii39FBA8V8erfcNIFtPXBwOO9b5vnRowKaRgjLbe0vLK6ll8vbGxube/ou3tNEcYckwYOWcjbLhKE0YA0JJWMtCNOkO8y0nIHN5nfeiJc0DB4lMOIOD7qBdSjGEkldfTbgu1xhJNayTxL7PE8i/dcJzHLxhinxjxJ71Pbj4/TxDyBNcXSQkcvzky4SGaTimCKekd/s7shjn0SSMyQEJZpRNJJEJcUM5IW7FiQCOEB6hFL0QD5RDjJ+LoUHimlC72QqxdIOFZ/dyTIF2Lou6rSR7Iv5r1M/M+zYuldOQkNoliSAE8WeTGDMoRZdLBLOcGSDRVBmFN1K8R9pNKTKuAsBHP+y4ukWSmb5+XKw0Wxej2NIw8OwCEoARNcgiq4A3XQABg8g1cwAh/ai/aufWpfk9KcNu3ZB3+gff8A8g2jDQ==</latexit>

L = BSs serving each user L = Number of BSs
K(1� µ)

N0(1 + Lµ)
<latexit sha1_base64="PkdDz6p6JgL//YheCqB5PLVIAEY=">AAACWXicjVFdS8MwFE2r01m/qnv0pTiEiTraKejj0BdBkQnuA9pS0izdwtIPklQYpX/SB0H8Kz6Ydhvo5oMHAodzz725OfETSrgwzQ9FXVuvbGxWt7Ttnd29ff3gsMfjlCHcRTGN2cCHHFMS4a4gguJBwjAMfYr7/uSuqPdfMeMkjl7ENMFuCEcRCQiCQkqenmhOwCDKHhrWhROmp3mWOeVUm418N7OaZolzc5nkT56ZN6yz/9of83K85un1hWasksWAOpij4+lvzjBGaYgjgSjk3LbMRLgZZIIginPNSTlOIJrAEbYljWCIuZuVS+XGiVSGRhAzeSJhlOrPjgyGnE9DXzpDKMZ8uVaIf9XsVAQ3bkaiJBU4QrOLgpQaIjaKmI0hYRgJOpUEIkbkrgYaQ5m0kJ9RhGAtP3mV9FpN67LZer6qt2/ncVTBETgGDWCBa9AG96ADugCBd/ClVJQN5VNV1KqqzayqMu+pgV9Qa99hqaq/</latexit>

Each user receives from one BS with N0 antennas
number users served by each BS N0≥

Interplay between shared caches and multiple antennas:
• adding 1 degree of cache-redundancy increases a DoF to N0,
• going from 1 to No antennas reduces delivery time by N0.

Combination of both unicast and network-coded multicast
Two main building blocks:

a a satellite-enabled broadcast distribution backbone leveraging the CCM in order to improve both
performance and security of the transmissions;

a MPEG-DASH/WebRTC-enabled edge distribution network.

Secure Hybrid In Network caching Environment
SHINE

Goal:
E2E secure delivery of multimedia content over integrated
satellite-terrestrial cache-aided networks.

(ii) leveraging cutting-edge streaming technologies (MPEG-DASH WebRTC) to optimize E2E content distribution

(i) relying cache-aided coded multicast to improve both performance and security of communications.

S. P. Romano, C. Roseti, A. M. Tulino, ISNCC, 2018
SHINE: Secure Hybrid In Network caching Environment, ESA Project 2017-2019

So far…
used previously in-network stored exact copies of the information that need to be delivered as references for network compression during delivery

A B

Cache-Aided Coded Multicasting

Requested files

B A

B2 A1

Source
N=2 files

Exact Content
Matching

Dynamic Network Compression

U1

A1
B1

U2

A2
B2

Moving towards real-time
(personalized media dominated)
services exact cache hits are
almost non-existent.

BUT

Updated versions of dynamic data
can exhibit high levels of correlation

What about
Approximate Content

Matching
(e.g. correlation)

Dynamic Network Compression

A B

Cache-Aided Coded Multicasting

Requested files

B A

B2 A1

Source
N=2 files

Exact Content
Matching

U1

A1
B1

U2

A2
B2

So far…
used previously in-network stored exact copies of the information that need to be delivered as references for network compression during delivery

Dynamic Network Compression
Compressing information as it travels through the network

Static local compression is myopic to spatiotemporal
information lifecycle

We still compress information based solely on local intra-file
correlations, without taking into account increasingly relevant
network-wide spatiotemporal correlations

Dynamic e2e compression adaptively exploits redundancy
throughout the network

Exploiting cloud network wide spatiotemporal redundancy to push
the fundamental limits of information compression

FROM STATIC LOCAL COMPRESSION TO DYNAMIC NETWORK COMPRESSION

Previously stored information are exploited as references for network compression during delivery

Towards dynamic E2E network compression

[Timo, Bidokthi, Wigger and Geiger TIT’18]:
• Lossy reconstruction.
• Two receivers and one cache, no coded multicasting.

[Op ’t Veld and Gastpar ISIT’17]:
• Lossy reconstruction Gaussian sources.
• Distortion-rate-memory region two files.

[Yang and Gunduz ICC’18]:
• Specific correlation structure.
• Worst-case rate-memory trade-off.

[Hassanzadeh, Tulino, Llorca, Erkip, ITW’2016, TIT’20]
• Lossless reconstruction.
• Arbitrary correlated sources.
• Dynamic content.
• General system parameters, prove optimality in some cases.

Cache-Aided Coded Multicast with Correlated library

• Library Compression Approach
• Two step approach:
• Step 1: Sender jointly compresses the library.

• Gray-Wyner source-coding.
• Step 2: Correlation-unaware caching and coded multicast.

• Multiple-request scheme.

• On-demand Compression Approach
• Store individually compressed.
• Deliver jointly compressed

Towards dynamic E2E network compression
Cache-Aided Coded Multicast with Correlated library

• Library Compression Approach
• Two step approach:
• Step 1: Sender jointly compresses the library.

• Gray-Wyner source-coding.
• Step 2: Correlation-unaware caching and coded multicast.

• Multiple-request scheme.

• On-demand Compression Approach
• Store individually compressed.
• Deliver jointly compressed

• Effective for Static Library

Towards dynamic E2E network compression
Cache-Aided Coded Multicast with Correlated library

• Library Compression Approach
• Two step approach:
• Step 1: Sender jointly compresses the library.

• Gray-Wyner source-coding.
• Step 2: Correlation-unaware caching and coded multicast.

• Multiple-request scheme.

• On-demand Compression Approach
• Store individually compressed.
• Deliver jointly compressed

• Effective for Dynamic Library

Towards dynamic E2E network compression
Cache-Aided Coded Multicast with Correlated library

Approach 1: Library Compression-Based

Correlated files.
Lossless reconstruction.

Separate Compression and Caching/Delivery

Parisa Hassanzadeh, Ph.D. Defense 15/ 56

Correlation Unaware
Cache-aided Coded
Multicast scheme

Compressed
Library

• Library Compression Approach (two step approach):
• First compress the library
• Then apply a correlation unaware CCM (Cache-aided Coded Multicast) scheme

which assume independent files and consisting of
• a cache phase (to populate caches)
• a delivery phase

Towards dynamic E2E network compression
Cache-Aided Coded Multicast with Correlated library

Approach 1: Library Compression-Based

Correlated files.
Lossless reconstruction.

Separate Compression and Caching/Delivery

Parisa Hassanzadeh, Ph.D. Defense 15/ 56

• Library Compression Approach (two step approach):
• First compress the library
• Then apply a correlation unaware CCM (Cache-aided Coded Multicast) scheme

which assume independent files and consisting of
• a cache phase (to populate caches)
• a delivery phase

Compressed
Library

Correlation Unaware
Cache-aided Coded
Multicast scheme

Towards dynamic E2E network compression
Cache-Aided Coded Multicast with Correlated library

Example two files Two Files and Two Receivers

Sender: library compression.

Multiple-request scheme: particular demand.
Treat sublibraries independently.

Parisa Hassanzadeh, Ph.D. Defense 17/ 56

• Multiple-request scheme:
• particular demand.

• Treat sublibraries independently.

Two Files and Two Receivers

Sender: library compression.

Multiple-request scheme: particular demand.
Treat sublibraries independently.

Parisa Hassanzadeh, Ph.D. Defense 17/ 56

Two Files and Two Receivers

Sender: library compression.

Multiple-request scheme: particular demand.
Treat sublibraries independently.

Parisa Hassanzadeh, Ph.D. Defense 17/ 56

Two Files and Two Receivers

Sender: library compression.

Multiple-request scheme: particular demand.
Treat sublibraries independently.

Parisa Hassanzadeh, Ph.D. Defense 17/ 56

Common Sub-library

Private Sub-library

• Library Compression Approach (two step approach):

Multiple-Request
Multicast Encoder Gray-Wyner

Decoder

Approach 1: Library Compression-Based

Correlated files.
Lossless reconstruction.

Separate Compression and Caching/Delivery

Parisa Hassanzadeh, Ph.D. Defense 15/ 56

Multiple-Request
Multicast DecoderCache ŴF

k
<latexit sha1_base64="SllY+giL+Fh0Eh9g8EMmjm9o2CM=">AAAB83icbVDLSgNBEOz1GeMr6tHLYBA8hd0o6DEoiMcI5gHZNcxOZpMhsw9meoWw5De8eFDEqz/jzb9xNtmDJhY0FFXddHf5iRQabfvbWlldW9/YLG2Vt3d29/YrB4dtHaeK8RaLZay6PtVcioi3UKDk3URxGvqSd/zxTe53nrjSIo4ecJJwL6TDSASCUTSS644oZp1pf/x4W+5XqnbNnoEsE6cgVSjQ7Fe+3EHM0pBHyCTVuufYCXoZVSiY5NOym2qeUDamQ94zNKIh1142u3lKTo0yIEGsTEVIZurviYyGWk9C33SGFEd60cvF/7xeisGVl4koSZFHbL4oSCXBmOQBkIFQnKGcGEKZEuZWwkZUUYYmpjwEZ/HlZdKu15zzWv3+otq4LuIowTGcwBk4cAkNuIMmtIBBAs/wCm9War1Y79bHvHXFKmaO4A+szx+EfZFW</latexit>

Gray-Wyner
Source Coding

Multiple-Request
Multicast Encoder

Approach 1: Library Compression-Based

Correlated files.
Lossless reconstruction.

Separate Compression and Caching/Delivery

Parisa Hassanzadeh, Ph.D. Defense 15/ 56

Gray-Wyner
Source Coding

Multiple-Request
Cache Encoder

• First compress the library

• Caching Phase

• Delivery Phase

Towards dynamic E2E network compression
Cache-Aided Coded Multicast with Correlated library

• Library Compression Approach (two step approach):

Multiple-Request
Multicast Encoder Gray-Wyner

Decoder

Approach 1: Library Compression-Based

Correlated files.
Lossless reconstruction.

Separate Compression and Caching/Delivery

Parisa Hassanzadeh, Ph.D. Defense 15/ 56

Multiple-Request
Multicast DecoderCache ŴF

k
<latexit sha1_base64="SllY+giL+Fh0Eh9g8EMmjm9o2CM=">AAAB83icbVDLSgNBEOz1GeMr6tHLYBA8hd0o6DEoiMcI5gHZNcxOZpMhsw9meoWw5De8eFDEqz/jzb9xNtmDJhY0FFXddHf5iRQabfvbWlldW9/YLG2Vt3d29/YrB4dtHaeK8RaLZay6PtVcioi3UKDk3URxGvqSd/zxTe53nrjSIo4ecJJwL6TDSASCUTSS644oZp1pf/x4W+5XqnbNnoEsE6cgVSjQ7Fe+3EHM0pBHyCTVuufYCXoZVSiY5NOym2qeUDamQ94zNKIh1142u3lKTo0yIEGsTEVIZurviYyGWk9C33SGFEd60cvF/7xeisGVl4koSZFHbL4oSCXBmOQBkIFQnKGcGEKZEuZWwkZUUYYmpjwEZ/HlZdKu15zzWv3+otq4LuIowTGcwBk4cAkNuIMmtIBBAs/wCm9War1Y79bHvHXFKmaO4A+szx+EfZFW</latexit>

Gray-Wyner
Source Coding

Multiple-Request
Multicast Encoder

Approach 1: Library Compression-Based

Correlated files.
Lossless reconstruction.

Separate Compression and Caching/Delivery

Parisa Hassanzadeh, Ph.D. Defense 15/ 56

Gray-Wyner
Source Coding

Multiple-Request
Cache Encoder

• Caching Phase

• Delivery Phase

• Then apply multiple request CCM
scheme for independent files.

Towards dynamic E2E network compression
Cache-Aided Coded Multicast with Correlated library

Library Compression Approach
Optimality Results:

• Two files and K users:
• Optimal for small and large memory.
• Half of the conditional entropy of files elsewhere.

• Two files and two users:
• Optimal over a larger region.
• Optimal for special source.

• Extension to three files:
• Optimal for large memory.
• Half of H(W1, W2 | W3) elsewhere.

• Lower bound on the optimal load-memory trade-off.

Shortcomings of this Approach
• Not robust to system dynamics: a new file is added.

• Jointly re-compressed entire library.
• Update receiver caches.

• General setting with multiple files and receivers.

On-demand Compression Approach

Multiple-Request
Cache Encoder

Approach 1: Library Compression-Based

Correlated files.
Lossless reconstruction.

Separate Compression and Caching/Delivery

Parisa Hassanzadeh, Ph.D. Defense 15/ 56

Approach 1: Library Compression-Based

Correlated files.
Lossless reconstruction.

Separate Compression and Caching/Delivery

Parisa Hassanzadeh, Ph.D. Defense 15/ 56

Approach 1: Library Compression-Based

Correlated files.
Lossless reconstruction.

Separate Compression and Caching/Delivery

Parisa Hassanzadeh, Ph.D. Defense 15/ 56

Correlation Aware
Multiple-Request
Multicast Decoder

Cache

ŴF
k

<latexit sha1_base64="SllY+giL+Fh0Eh9g8EMmjm9o2CM=">AAAB83icbVDLSgNBEOz1GeMr6tHLYBA8hd0o6DEoiMcI5gHZNcxOZpMhsw9meoWw5De8eFDEqz/jzb9xNtmDJhY0FFXddHf5iRQabfvbWlldW9/YLG2Vt3d29/YrB4dtHaeK8RaLZay6PtVcioi3UKDk3URxGvqSd/zxTe53nrjSIo4ecJJwL6TDSASCUTSS644oZp1pf/x4W+5XqnbNnoEsE6cgVSjQ7Fe+3EHM0pBHyCTVuufYCXoZVSiY5NOym2qeUDamQ94zNKIh1142u3lKTo0yIEGsTEVIZurviYyGWk9C33SGFEd60cvF/7xeisGVl4koSZFHbL4oSCXBmOQBkIFQnKGcGEKZEuZWwkZUUYYmpjwEZ/HlZdKu15zzWv3+otq4LuIowTGcwBk4cAkNuIMmtIBBAs/wCm9War1Y79bHvHXFKmaO4A+szx+EfZFW</latexit>

Correlation aware
Multiple Requests
Multicast Encoder

Approach 1: Library Compression-Based

Correlated files.
Lossless reconstruction.

Separate Compression and Caching/Delivery

Parisa Hassanzadeh, Ph.D. Defense 15/ 56

• Caching Phase

• Delivery Phase

Correlation-Aware Cache Encoder.
• Divide each file into equal-size packets.
• Cache based on correlations and popularity.

Correlation-Aware Multicast Encoder
• Use network cached information as

reference for compression during delivery.

Very Efficient in Dynamic content services.

• Deterministic cache
placement.

• Static library.

• Two files and two
receivers.

Cache-Aided Coded Multicast with Correlated library

Two-File Two-Receiver Network

Static library.
Two files and two receivers.
Deterministic cache placement.

Parisa Hassanzadeh, Ph.D. Defense 27/ 56

M

L
oa

d

M=1
0.09

Cache-Aided Coded Multicast with Correlated library

1 5 10 15 20 25 30

1

2

3

4

5

6

7

8

Local Storage Capacity

Ne
tw

or
k L

oa
d

Correlation−Aware Coded Multicast
Coded Multicast
Unicast

7.8x

Turning memory
into Bandwidth

Un-coded
Exact match Coded low complexity
Correlation-aware Coded Low Complexity

L
oa

d

M

Numerical Results: Number of Receivers

Static library.
N = 1000 files.
Cache size M = 0.1⇥ library size.
Correlation parameter � = 0.1: G� = 4 correlated packets.

Parisa Hassanzadeh, Ph.D. Defense 33/ 56

N = 1000 files.
Cache size M = 0.1× library size. Correlation parameter δ = 0.3

N = 30 files
K= 10 users

Correlation parameter δ = 0.3

1.8x

1.6x

L
oa

d

Performance assessments

K users

Existing systems don’t use coding and end up
unnecessarily keeping old versions to ensure
consistency via replication (e.g., Microsoft

Azure) leading to unbearable cloud resource
usage, specially for highly dynamic data.

Holistic analytical understanding of the
fundamental trade-offs between

consistency, freshness, storage cost, and
access latency. Efficient codes able to
approach such fundamental trade-offs.

Extend the benefits of distributed cloud
storage (low latency access, robustness to
failures) to highly dynamic applications,
where the main challenges are data

freshness and consistency

Efficient Storage of Dynamic Data in Distributed Clouds
Rapid access to fresh and consistent data without costly replication

BASELINE BREAKTHROUGHBIG CHALLENGE

A NOVEL INFORMATION THEORETIC FRAMEWORK FOR CONSISTENT DELIVERY
OF FRESH DYNAMIC DATA

[Wang and Cadambe, TIT’14], [Ali, Cadambe, Llorca, Tulino, TC’20]

Outline

• Real-time Computation
Efficient Service Configuration (Storage/Computation/Delivery)
• Network Slicing (NFV/SDN)
• Mobile Edge Computing (MEC)
• Real-time Stream processing

Information
Theory

Communication
and Coding

Theory
Network Theory Statistical

Physics

Stochastic
Optimization Random Matrix

Theory

64 © Nokia 2016

CLOUD-INTEGRATED NETWORKS AS UNIVERSAL COMPUTE PLATFORMS

VF

VF

VF

VF

APP

Cloud Network Slice

M. Weldon, “The Future X Network: A Bell Labs Perspective,” CRC PRESS, October 2015.

Every human experience will be supported by a collection of services running over a cloud-integrated
network.

65 © Nokia 2016

CLOUD-INTEGRATED NETWORKS AS UNIVERSAL COMPUTE PLATFORMS

APP

APP

…

VF

VF

VF

VF

VF

VFVF

Cloud Network Slice

M. Weldon, “The Future X Network: A Bell Labs Perspective,” CRC PRESS, October 2015.

These services take information sources from the physical world, route them through multiple
functions instantiated across the cloud network until delivering output flows that create some form of
augmented value for the end user

66 © Nokia 2016

CLOUD-INTEGRATED NETWORKS AS UNIVERSAL COMPUTE PLATFORMS

VF

VF

APP

APP

…

Elastic Network
Resources

Elastic Cloud
Resources

VF

Cloud Network Slice

VF

VFVF

VF

• Opportunities
• Users can consume

resource- and interaction-
intensive applications from
resource-limited devices

• Operators can reduce costs
and create new value-
added services

• Overall sustainability

• Challenges
• Optimized elastic

consumption of
compute/storage/network
resources

• End-to-end autonomous
configuration and control

67 © Nokia 2016

Request time-scale

Network time-scale

Service time-scale

CLOUD NETWORK OPTIMIZATION AND CONTROL

• Physical resource allocation (months, weeks)
- Physical site/link deployment/consolidation
- Compute/storage/network equipment

• Service distribution (days, hours)
- Data/function placement/migration
- Cloud/network vResource allocation

• Virtual resource auto-scaling (minutes, seconds)
- Virtual resource scale up/down
- Virtual resource scale out/in

• Information flow (seconds, milliseconds)
- Request routing
- Flow scheduling
- Load balancing

Distributed,
reactive

Centralized,
proactive

Reconf.
cost/time

Innovation/market
time-scale

68 © Nokia 2016

Request time-scale

Network time-scale

Service time-scale

CLOUD NETWORK OPTIMIZATION AND CONTROL

• Physical resource allocation (months, weeks)
- Physical site/link deployment/consolidation
- Compute/storage/network equipment

• Service distribution (days, hours)
- Data/function placement/migration
- Cloud/network vResource allocation

• Virtual resource auto-scaling (minutes, seconds)
- Virtual resource scale up/down
- Virtual resource scale out/in

• Information flow (seconds, milliseconds)
- Request routing
- Flow scheduling
- Load balancing

Distributed,
reactive

Centralized,
proactive

Reconf.
cost/time

• Barcelo, Llorca, Tulino, Raman, “The Cloud Service Distribution Problem in Distributed Cloud Networks,” IEEE ICC, 2015.
• Barcelo, Llorca, Tulino, Morell, Vicario, “IoT-Cloud Service Optimization in Smart Environments,” IEEE JSAC, 2016.
• Feng, Llorca, Tulino, Raz, Molisch “Approximation Algorithms for the NFV Service Distribution Problem,” IEEE INFOCOM, 2017.
• Poularakis, Llorca, Tulino, Tassiulas, “Joint Service Placement and Request Routing in Multi-Cell Edge Computing Networks,” IEEE INFOCOM, 2019.
• Michael, Llorca, Tulino, “Approximation Algorithms for the Optimal Distribution of Real-time Stream-Processing Services,” IEEE ICC, 2019

Innovation/market
time-scale

• E2E Service Optimization
- Function placement and flow routing
- Cloud/network resource allocation
- Centralized solution with average

demand knowledge

69 © Nokia 2016

Request time-scale

Network time-scale

Service time-scale

CLOUD NETWORK OPTIMIZATION AND CONTROL

• Physical resource allocation (months, weeks)
- Physical site/link deployment/consolidation
- Compute/storage/network equipment

• Service distribution (days, hours)
- Data/function placement/migration
- Cloud/network vResource allocation

• Virtual resource auto-scaling (minutes, seconds)
- Virtual resource scale up/down
- Virtual resource scale out/in

• Information flow (seconds, milliseconds)
- Request routing
- Flow scheduling
- Load balancing

Distributed,
reactive

Centralized,
proactive

Reconf.
cost/time

• E2E Service Optimization
- Function placement and flow routing
- Cloud/network resource allocation
- Centralized solution with average

demand knowledge

• Dynamic Service Control
- Dynamic flow scheduling and virtual

resource auto-scaling
- Distributed online solution

• Feng, Llorca, Tulino, Molisch, “Dynamic Service Optimization in Distributed Cloud Networks,” IEEE INFOCOM SWFAN, 2016.
• Feng, Llorca, Tulino, Molisch, “On the Delivery of Augmented Information Services over Wireless Computing Networks,” IEEE ICC, 2017.
• Zhang, Sinha, Llorca, Tulino, Modiano, “Optimal Control of Distributed Computing Networks with Mixed-Cast Traffic Flows,” IEEE INFOCOM, 2018.
• Feng, Llorca, Tulino, Molisch, “Optimal Dynamic Cloud Network Control,” IEEE/ACM Transactions on Networking, 2018.
• Feng, Llorca, Tulino, Molisch, “Optimal Control of Wireless Computing Networks,” IEEE Transactions on Wireless Communications, 2018.

Innovation/market
time-scale

70 © Nokia 2016

Request time-scale

Network time-scale

Service time-scale

CLOUD NETWORK OPTIMIZATION AND CONTROL

• Physical resource allocation (months, weeks)
- Physical site/link deployment/consolidation
- Compute/storage/network equipment

• Service distribution (days, hours)
- Data/function placement/migration
- Cloud/network vResource allocation

• Virtual resource auto-scaling (minutes, seconds)
- Virtual resource scale up/down
- Virtual resource scale out/in

• Information flow (seconds, milliseconds)
- Request routing
- Flow scheduling
- Load balancing

Distributed,
reactive

Centralized,
proactive

Reconf.
cost/time

• E2E Service Optimization
- Function placement and flow routing
- Cloud/network resource allocation
- Centralized solution with average

demand knowledge

• Dynamic Service Control
- Dynamic flow scheduling and virtual

resource auto-scaling
- Distributed online solution

Innovation/market
time-scale

• Barcelo, Llorca, Tulino, Raman, “The Cloud Service Distribution Problem in Distributed Cloud Networks,” IEEE ICC, 2015.
• Barcelo, Llorca, Tulino, Morell, Vicario, “IoT-Cloud Service Optimization in Smart Environments,” IEEE JSAC, 2016.
• Feng, Llorca, Tulino, Raz, Molisch “Approximation Algorithms for the NFV Service Distribution Problem,” IEEE INFOCOM, 2017.
• Poularakis, Llorca, Tulino, Tassiulas, “Joint Service Placement and Request Routing in Multi-Cell Edge Computing Networks,” IEEE INFOCOM, 2019.
• Michael, Llorca, Tulino, “Approximation Algorithms for the Optimal Distribution of Real-time Stream-Processing Services,” IEEE ICC, 2019

THIS TALK

71 © Nokia 2016

VF

VF

VF

VF

VFVF

VF

Function
Placement

Flow
Routing

Cloud
resource
allocation

Network
resource
allocation

…APP

APP

…

JOINT END-TO-END SERVICE OPTIMIZATION

• Function placement
- Function chaining, splitting, and replication

• Flow routing
- Flow scaling
- Mix of unicast and multicast traffic

72 © Nokia 2016

EXISTING APPROACHES
COMPLEX DISJOINT SOLUTIONS

VF

VF

VF

VF

VFVF

VF

Function
Placement

Flow
Routing

Cloud
resource
allocation

Network
resource
allocation

…APP

APP

…

Facility
Location

Multi-commodity
Flow

• Driven by old vision of cloud and network separation
• No joint placement/routing optimization
• Unacceptable QoE, limited knowledge augmentation, and/or unsustainable costs with resource overprovisioning.

Separate data/function placement, flow routing, cloud and network resource allocation

73 © Nokia 2016

Function
Placement

Flow
Routing

Cloud
resource
allocation

Network
resource
allocation

…APP

APP

…

CLOUD NETWORK FLOW APPROACH

CLOUD NETWORK FLOW

• Comprehensive model
- Arbitrary flow chaining, scaling, splitting, and replication
- Arbitrary traffic mix (unicast and multicast flows)
- Non-isomorphic embeddings

• Approximation guarantees

VF

VF

VF

VF

VFVF
VF

74 © Nokia 2016

o1 o2 o3 o4

Service
Graph

CLOUD NETWORK FLOW APPROACH

• Directed acyclic graph that encodes the relationship
between service functions and associated
input/output flows

1. Service Graph

75 © Nokia 2016

o1 o2 o3 o4

Service
Graph

CLOUD NETWORK FLOW APPROACH:

• Directed acyclic graph that encodes the relationship
between service functions and associated
input/output flows

• Control/data plane as well as hardware/software
based functions

• Heterogeneous function complexity (proc. res. units
per flow unit) and flow scaling (output flow units
per input flow unit)

Vertical Service
(e.g., Augmented Reality)

Personalized
Stream

Stream 1

Stream 2

Network Service
(e.g., Fixed Residential Video)

vCDN

vFANvCPE

Video
consumption

Video
source/
capturevBNGFANCPE

APP

APP

Data

Control

Flow Scaling

1. Service Graph

76 © Nokia 2016

o1 o2 o3 o4

Service
Graph

Cloud-
Augmented

Graph

CLOUD NETWORK FLOW APPROACH

Source

Compute

Transport
Demand

fu
st qu

fwu
tr fuv

tru

pr

fu
prifu

pro

Memory
CPU

Storage
Sensing

2. Cloud-augmented graph

77 © Nokia 2016

o1 o2 o3 o4

Service
Graph

Cloud-
Augmented

Graph

CLOUD NETWORK FLOW APPROACH

Source

Compute

Transport
Demand

fu
st qu

fwu
tr fuv

tru

pr

fu
prifu

pro

Memory
CPU

Storage
Sensing

2. Cloud-augmented graph

78 © Nokia 2016

o1 o2 o3 o4

Service
Graph

Cloud-
Augmented

Graph

CLOUD NETWORK FLOW APPROACH

Source

Compute

Transport
Demand

fu
st qu

fwu
tr fuv

tru

pr

fu
prifu

pro

Memory
CPU

Storage
Sensing

2. Cloud-augmented graph

79 © Nokia 2016

Cloud-
Network

Flow
Solution

o1 o2 o3 o4

fu
st qu

fwu
tr fuv

tru

pr

fu
prifu

pro

Service
Graph

Cloud-
Augmented

Graph

o4

fu
st qu

fwu
tr fuv

tru

pr

fu
prifu

pro

o2fu
st qu

fwu
tr fuv

tru

pr

fu
prifu

pro

o1

o2

o2

o3

o4

…

o1 o2

o3 fu
st qu

fwu
tr fuv

tru

pr

fu
prifu

pro

CLOUD NETWORK FLOW APPROACH

• Mixed-cast multi-commodity-chain flow on a
cloud-augmented graph

• Includes and generalizes placement and network
flow problems

• Captures combined use of
compute/storage/transport resources, unicast and
multicast flows, and flow/function chaining,
scaling, splitting, and replication

• Admits optimal polynomial time solutions under
linear costs and splittable flows, and efficient
approximations otherwise

80 © Nokia 2016

CLOUD NETWORK FLOW
3. Mixed-cast chained information flow

Cost
Function

Generalized Flow
Conservation

Sources and
Demands

Flow Chaining
Virtual flows

Actual flowsActual flow
sizing

Fractional/
Integer
flows

… …

u

p

qs

!"#$,& !'"$,&

!(#$,& !#($,&

81 © Nokia 2016

CLOUD NETWORK FLOW
3. Mixed-cast chained information flow

Cost
Function

Generalized Flow
Conservation

Sources and
Demands

Flow Chaining

Actual flow
sizing

Fractional/
Integer
flows

• Fractional flows

- Good for network slices

- Large aggregate flows

- Per-flow splitting

• Integer flows

- Good for individual services

- Unsplittable flows

82 © Nokia 2016

SERVICE CLASSIFICATION AND SOLUTIONS

Unicast Multicast

Splittable Unsplittable Splittable Unsplittable

Service Chain Polynomial

FPTAS

NP-Hard

Bicriteria
approx.

NP-Hard (no
coding)

NP-Hard

Bicriteria
approx.

Service DAG NP-Hard (no
coding

NP-Hard

Bicriteria
approx.

NP-Hard (no
coding)

NP-Hard

Bicriteria
approx.

83 © Nokia 2016

SERVICE CLASSIFICATION AND SOLUTIONS

Unicast Multicast

Splittable Unsplittable Splittable Unsplittable

Service Chain Polynomial

FPTAS

NP-Hard

Bicriteria
approx.

NP-Hard (no
coding)

NP-Hard

Bicriteria
approx.

Service DAG NP-Hard (no
coding

NP-Hard

Bicriteria
approx.

NP-Hard (no
coding)

NP-Hard

Bicriteria
approx.

5G

Slices

RTSP

84 © Nokia 2016

NETWORK SERVICE CHAINS
• Network: Generic US Metro
- 4 Metro PoP, 12 Metro Agg, 60 Metro Edge
- 10G links, CloudBand compute nodes

• Service: Fixed Residential Video
- Data plane: vCDN, vBNG, FAN, CPE
- Control Plane: vCDN, vBNG, vFAN, vCPE

• Demand:
- 2014, 2018, 2022 video traffic
- 50% VoD, 40% VS, 10% IPTV

vCDN

vFANvCPE

Video
consumption

Video
source/
capture

vBNGFAN
CPE

o2 o1o3o4

1.64x

5.25x

TCO
(M$)

0

50

100

150

200

250

2014 2018 2022

0% Managed

10% Managed

50% Managed

90% Managed

2018 traffic

V
H
O

IO IO

0

50

100

150

200

250

PMO OPT, 0% Managed OPT, 90% Managed

TCO
(M$)

Virtualization
Distribution/consolidation

Hosted Services

85 © Nokia 2016

SMART CITY SERVICES

• IoT-Cloud Network:
- Cloud layer (core, metro, edge)
- Access layer
- Device layer

HO

IO IO

EO EO EO

WSN1 WSN2 WSN3

Virtualized Sensing Platform

Smart
Devices

D
ev

ic
e

La
ye

r
A

cc
es

s
La

ye
r

C
lo

ud
 L

ay
er

10 20 50 100 200
Personalized Information Rate (kbps)

0

1

2

3

4

5

6

7

8

9

Av
er

ag
e

Po
w

er
 C

on
su

m
pt

io
n

pe
r U

se
r (

W
)

Fully Distributed
Cloudlet
Centralized
IoT-Cloud

…

Sensor
Measurements

(WSN1)

…

Sensor
Measurements

(WSN2)

…

Sensor
Measurements

(WSN3)

Aggregated
Measurements

City
Information B

City
Information C

City
Information A

• City Streams Service:
- Deliver contextually relevant

personalized city streams

• Operational cost as a function of
personalized stream data rate

86 © Nokia 2016

WORLD WIDE STREAMS (WWS)

• Distributed stream processing platform

• Produces and delivers streams of real-time
relevance to geographically dispersed users via
the real-time processing of geographically
dispersed source streams

87 © Nokia 2016

WORLD WIDE STREAMS

Service graph:

Cloud network
graph:

World Knowledge-Informed Streaming Service Distribution Submi�ed for review to SIGCOMM, 2018

• Overall, historical building are twice as often requested
as soccer games. (2-to-1 ratio among the template in-
stances)

• Overall, related to the scene classi�er’s four distin-
guished classes, portraits (sel�es), outdoor scenes, in-
door scenes and other are known to occur in a 0.3-0.4-
0.2-0.1 distribution.

Based on generic permutation and equivalence rules stated
in the World Model, the Speci�cation Compiler annotates
the three-operator sub-graph from Composition Analyzer up
toObject Detector (video �lter sub-graph) to have as function-
ally invariant implementation variants, the 6 permutations
variants of the 3 operators, 3 variants due to optionality
of the Scene Classi�er when combined with the more expen-
siveObject Detector, and 3 variants whereObject Detector and
Composition Analyzer are working on parallel streams joined
with an AND-operator. All edges in the 12 variants-enriched
graph are further annotated with their NPoP-conditional
probability distributions.

As a means to verify sensitivity of selection and placement
to theWorld Model, we also consider the cases of entirely �at
PRM statistics (“�at”), and a case where the operators in the
video �lter sub-graph are extremely lucky in detecting what
they are after, thus boosting the expected output volumes of
the concerned operators to 85% (“lucky”).
Based on the dimensioning of the experiment, the Data

Flow Compiler derived a worst-case, su�ciently �ne-grained
scaled graph expansionwith the video preprocessing pipeline
instantiated per source base station, aggregating to a single
operator instance pipeline for each of the two template in-
stances, to end with a two-stage-scaled double, overlapping
tree of the �nal Media Server Multicast, using its recursive
operator de�nition.

The variant-enriched, expanded, fully stream volume esti-
mates annotated graph is further processed by the Placement
Solver to obtain a solution for the currently requested service
collection, deciding on graph variant selection and gener-
alized placement. For the automatic variant selection, the
Placement Solver considers the < and > pseudo-operators as
regular operators, which however force the selection of only
one variant exclusively (unless partitioning across multiple
variants is foreseen by the expanded graph). To be neutral
on the actual placement cost criterion, they are treated as
having zero compute cost and zero additional transport cost.

6.3 Placement decision evaluation
We have done this experiment for the real PRM estimates,
and for the “�at” and the “lucky” validation statistics, to get
an indication of the sensitivity of the solution to the PRM
data with our approach. As a baseline, we compared this
to a manual, heuristic placement as was regularly used in

WWS �eld trials, where a video processing expert decides on
the deployed graph variant, applying an informal heuristic
putting video processing topologically as close as possible
to the sources, considering operators to be either video-in,
video-out, video-in-and-out, or low data rate. Table 1 sum-
marizes the obtained results in terms of variant selected and
overall resulting cost estimation.

The video expert assumed the variant as in the template to
be the best overall strategy, which after placement turns out
to have an estimated cost of 1.50 cEUR/h for the given case.
The semi-manual, heuristic placement was concluded to be
sound and intuitive by placing an instance of the prepro-
cessing and video �lter sub-graph for the historical buildings
service instance in each of the three edge cloud clusters, an
instance of that sub-graph for the soccer games service in-
stance in the Paris edge cloud cluster only, and the remainder
of the two pipeline on the central AWS cloud, except for the
second Media Server Multicast stage for which an instance
was again placed in each of the lab edge cloud clusters.

Table 1: Overview of selection and placement results

Expert Real PRM “�at” “lucky”
Baseline

Total Cost 1.50 0.70 1.68 2.60
(cEUR/h)
Variant Var. 1 Var. 4 Var. 4 Var. 4
selected (manual) (autm.) (autm.) (autm.)
Placement “Video close Smart Mostly Mostly

note to source” distrib. AWS AWS

Compared to that baseline, the real PRM-informed place-
ment solution, automatically generated with our approach,
selected a di�erent variant, variant 4, which is a non-paralleled
pipeline where Scene Classi�er is executed before Composi-
tion Analyzer, obtaining an estimated total cost of only 0.70
cEUR/h, which is almost a 50% improvement over the base-
line. This is not only to be attributed to a better placement
but also to a better estimation of the stream volumes as such,
for which thus a lower amount of resources must be pre-
allocated thanks to our new method. Quite di�erent from
the expert-assisted baseline placement, the placement with
our new autonomous method pushes all video �lter pipeline
sub-graphs in the Paris lab edge cloud cluster, with part
of the decoder operators for Paris-located cameras even in
their BSG edge, and the �nal pipeline from Stream Selector
to Multicast respectively in NYC, for the historical buildings
instance, and in Antwerp, for the soccer game instance.
For the “�at” case, which is a reasonable assumption for

stream volume estimationwithout any real-world knowledge
being injected, we see a considerable di�erence compared to

11

2X-4X

88 © Nokia 2016

CONCLUSIONS
• Networks are becoming universal compute platforms, able to host a variety of services and

applications that can optimize the automated operation of physical systems and augment human
experiences in real time.

• New mathematical tools are required to jointly optimize the allocation of compute, storage, and
network resources, as well as the efficient flow of information over such highly distributed
computing infrastructures.

• Dynamic cloud-network compression aims to an E2E compression of information throughout its
entire lifecycle - capture/creation, upload, storage, computation, and delivery – in order to
maximize conveyed information per unit cost

• Using cloud-network-wide spatiotemporal redundancy to push the fundamental limits of
information compression, pioneering algorithms in network compression, including compressed
video delivery with up to 8X capacity gains has been designed.

• Cloud network flow generalizes traditional network information flow models to jointly capture the
efficient storage, computation, and delivery of information of real-time relevance.

• Significant efficiency improvements can be obtained via the end-to-end optimization of next
generation services over distributed cloud-integrated networks.

89 © Nokia 2016

REFERENCES – CONTENT DISTRIBUTION

1. R. Ali, V. Cadambe, J. Llorca, A. Tulino, “Fundamental Limits of Erasure-Coded Key-Value Stores with Side Information,” Trans. On
Communications, 2020.

2. P. Hassanzadeh, A. Tulino, J. Llorca, E. Erkip, “Rate-Memory Trade-Off for Caching and Delivery of Correlated Sources” IEEE
Information on Theory, 2020.

3. P. Hassanzadeh, A. Tulino, J. Llorca, E. Erkip, Paris.a Hassanzadeh, Antonia M. Tulino, Jaime Llorca, Elza Erkip, ” Trans. On Wireless
Communications, 2020.

4. G. Vettigli, M. Ji, K. Shanmugan, J. Llorca, A. Tulino, G. Caire, “Efficient Algorithms for Coded Multicasting in Heterogeneous
Caching Networks”, MDPI Entropy, March 2019

5. P. Hassanzadeh, A. Tulino, J. Llorca, E. Erkip, “On Coding for Cache-Aided Delivery of Dynamic Correlated Content”, IEEE Journal on
Selected Areas in Communication, June 2018.

6. R. Ali, V. Cadambe, J. Llorca, A. Tulino, "Multi-Version Coding with Side Information," IEEE ISIT, June 2018
7. R. Ali, V. Cadambe, J. Llorca, A. Tulino, “Bridging the gap between the extremes of complete side information versus no side

information in consistent distributed storage” Information Theory and Applications, 2018,
8. C. Rosetti, S. Romano, A.M. Tulino, SHINE: Secure Hybrid In Network caching Environment, IEEE International Symposium on

Networks, Computers and Communications (ISNCC), 2018
9. M. Ji, A. M. Tulino, J. Llorca, G. Caire, “Order-Optimal Rate of Caching and Coded Multicasting with Random Demands”, IEEE

Information on Theory, Marzo 2017.
10. Y. Fadlallah, A.M. Tulino, D. Barone, G. Vettigli, J. Llorca, J.M. Gorce, “Coding for Caching in 5G Networks” IEEE Communications

Magazine, Vol. 55, No. 2, pp. 106-113, 2017
11. P. Hassanzadeg, A. Tulino, J. Llorca, E. Erkip, “Broadcast Caching Networks with Two Receivers and Multiple Correlated Sources”

ASILOMAR, 2017
12. . Shanmugam, A. Dimakis, J. Llorca, A. M. Tulino, “Coded Caching Main Technical Barriers: Finite Packetization and Channel

Heterogeneity” ASILOMAR, 2017.
13. P. Hassanzadeg, A. Tulino, J. Llorca, E. Erkip, “Rate-Memory Trade-off for the Two-User Broadcast Caching Network with

Correlated Sources” ISIT, 2017.
14. K. Shanmugam, A. M. Tulino, A. Dimakis, “Coded Caching with Linear Subpacketization is Possible using Ruzsa-Szeméredi Graphs”

ISIT, 2017.

90 © Nokia 2016

14. K. Shanmugam, M. Ji, A. M. Tulino, J. Llorca, A. Dimakis “Finite Length Analysis of Caching-Aided Coded Multicasting” IEEE
Information on Theory, Vol. 62, No. 10, pp. 5524-5537, 2016.

15. B. Azari, O. Simeone, U. Spagnolini, A. Tulino “Hypergraph-Based Analysis of Clustered Cooperative Beamforming with Application to
Edge Caching”, IEEE Wireless Communications Letters, Vol. 5, No. 1, pp. 84-87, 2016.

16. A. S. Cacciapuoti, M. Caleffi, M. Ji, J. Llorca, A. M. Tulino, “Speeding up Future Video Distribution via Channel-Aware Caching-Aided
Coded Multicast”, IEEE Journal on Selected Areas in Communications, Vol. 34, No. 8, pp. 2207-2218, 2016.

17. P. Hassanzadeg, A. Tulino, J. Llorca, E. Erkip, “Distortion-Memory Tradeoffs in Cache-Aided Wireless Video Delivery”, 22nd Annual
International Conference on Mobile Computing and Networking (Mobicom’16), New York, USA, October, 2016.

18. P. Hassanzadeg, A. Tulino, J. Llorca, E. Erkip, “Memory-Rate Trade-off for Caching and Delivery of Correlated Sources," 37th IEEE
Sarnoff Symposium, Newark, New Jersey, USA, September 2016. (Best paper award).

19. P. Hassanzadeg, A. Tulino, J. Llorca, E. Erkip, “Correlation-Aware Distributed Caching and Coded Delivery," IEEE Information Theory
Worskhop, (ITW), September 2016.

20. P. Hassanzadeg, A. Tulino, J. Llorca, E. Erkip, “Caching-Aided Coded Multicast for Correlated Sources," IEEE International
Symposium on Turbo Codes & Iterative Information Processing (ISTC), Brest, France, September 2016. (Invited Talk)

21. A.S. Cacciapuoti, M Caleffi, M. Ji, J. Llorca, A. Tulino, “On the Impact of Lossy Channels in Wireless Edge Caching”, IEEE
International Conference on Communications (ICC2016), 2016.

22. J. Llorca, A. M. Tulino, M. Varvello, J. Esteban, D. Perino, Member, “Energy Efficient Dynamic Content Distribution”, IEEE Journal on
Selected Areas in Communications, Vol. 33, No. 12, pp. 2826-2836, 2015.

23. M. Ji, A. M. Tulino, J. Llorca, G. Caire, “Caching in Combination Networks”, IEEE ASILOMAR, November 2015.
24. M.Ji, K. Shanmugam, G. Vettigli, J, Llorca, A. M. Tulino, “An Efficient Multiple-Groupcast Coded Multicasting Scheme for Finite

Fractional Caching”, 2015 IEEE International Conference on Communications (ICC2015), London, 2015.
25. G. Vettigli, M. Ji, A. M. Tulino, J, Llorca, P. Festa, “An Efficient Coded Multicasting Scheme Preserving the Multiplicative Caching

Gain” IEEE Infocom, 2015, Hong Kong, 2015.
26. M. Ji, M. Wing, A. M. Tulino, J. Llorca, G. Caire, M. Effros, M. Langberg, “On the Fundamental Limits of Caching in Combination

Networks”, 16th IEEE International Workshop on Signal Processing Advances in Wireless Communications, SPAWC 2015, Stockholm,
Sweden, 2015

REFERENCES – CONTENT DISTRIBUTION

91 © Nokia 2016

27. M. Ji, A. M. Tulino, J. Llorca, G. Caire, “Caching and coded multicasting: multiple requests with random demands”, IEEE Information
Theory Workshop, Israel, 2015.

28. P. Hassanzadeh, E. Erkip, J. Llorca, A. Tulino, “Distortion Memory Tradeoffs in Cache-Aided Wireless Video Delivery”, IEEE
ALLERTON, 2015.

29. M. Ji, A. Tulino, J. Llorca, G. Caire, “Caching and Coded Multicasting: Multiple Groupcast Index Coding”, GlobalSIP 2014, Atlanta,
Georgia, 2014.

30. M. Ji, A. Tulino, J. Llorca, G. Caire, “On the Average Performance of Caching and Coded Multicasting with Random Demands”,
SWCS 2014, Barcelona, Spain, 2014.

31. K. Shanmugam, M. Ji, A. Tulino, J. Llorca, A. Dimakis. “Finite Length Analysis of Caching-Aided Coded Multicasting,” IEEE Allerton
Conference, 2014.

32. . Llorca, A. M. Tulino, “Minimum cost caching-aided multicast under arbitrary demand” Conference on Signals, Systems and
Computers, Asilomar, 2013.

33. J. Llorca, A. M. Tulino, K. Guan, J. Esteban, M. Varvello, N. Choiy, D. Kilper, “Dynamic In-Network Caching for Energy Efficient
Content Delivery”, INFOCOM 2013.

34. J. Llorca, A. Tulino, K. Guan, D. C. Kilper, “Network-coded caching-aided multicast for efficient content delivery”, IEEE ICC 2013,
Budapest, Hungary, 2013.

REFERENCES – CONTENT DISTRIBUTION

92 © Nokia 2016

1. C.H. Wang, J. Llorca, A. Tulino, T. Javidi, Dynamic Cloud Network Control Under Reconfiguration Delay and Cost”, IEEE
Transactions on Networking, Januray 2019

2. K. Poularakis, J. Llorca, A. Tulino, L. Tassiulas, "Joint Service Placement and Request Routing in Multi-Cell Mobile Edge
Computing Networks," IEEE INFOCOM, April 2019.

3. M. Michael, J. Llorca, A. Tulino, "Approximation Algorithms for the Optimal Distribution of Real-Time Stream-Processing
Services," IEEE ICC, May 2019.

4. H. Feng, J. Llorca, A. Tulino, A. Molisch, "Optimal Control of Wireless Computing Networks," IEEE Transactions on Wireless
Communications, October 2018.

5. J. Zhang, A. Sinha, J. Llorca, A. Tulino, E. Modiano, "Optimal Control of Distributed Computing Networks with Mixed-Cast
Traffic Flows," IEEE INFOCOM, April 2018.

6. H. Feng, J. Llorca, A. Tulino, A. Molisch, "Optimal Dynamic Cloud Network Control”, IEEE/ACM Transactions on
Networking, September 2018.

7. L. Jiao, A. Tulino, J. Llorca, Y. Yin, A. Sala, "Smoothed Online Resource Allocation in Multi-Tier Distributed Cloud
Networks," IEEE Transactions on Networking, June 2017.

8. H. Feng, J. Llorca, A. M. Tulino, “Impact of channel state information on wireless computing network control” ASILOMAR, 2017.
9. H. Feng, J. Llorca, A. M. Tulino, A. Molish, “On the Delivery of Augmented Information Services over Wireless Computing

Networks” IEEE International Conference on Communications (ICC2017), 2017.
10. H. Feng, J. Llorca, A. Tulino, D. Raz, A. Molish, “Approximation Algorithms for the NFV Service Distribution Problem” IEEE

INFOCOM, 2017.
11. M. Barcelo, A. Correa, J. Llorca, A. M Tulino, J.L. Vicario, A. Morell, “IoT-Cloud Service Optimization in Next Generation Smart

Environments”, IEEE Journal on Selected Areas in Communications, Vol, 34, No. 12, pp. 4077-4090, 2016.
12. L. Jei, A. Tulino, J. Llorca, Y. Jin, A. Sala, “Smoothed Online Resource Allocation in Multi-Tier Distributed Cloud Networks”,

IEEE International Parallel & Distributed Processing Symposium (IPDPS), 2016.
13. H. Feng, J. Llorca, A. Tulino, A. Molish, “Optimal Dynamic Cloud Network Control”, IEEE International Conference on

Communications (ICC2016). 2016. (Best paper award).

REFERENCES – REAL-TIME COMPUTATION

93 © Nokia 2016

REFERENCES – REAL-TIME COMPUTATION

14. H. Feng, J. Llorca, A. Tulino, A. Molish, “Dynamic Network Service Optimization in Distributed Cloud Networks”, IEEE INFOCOM
Workshops, 2016.

15. P. Marchetta, J. Llorca, A. Tulino, A. Pescape, “MC3: a Cloud Caching Strategy for Next Generation Virtual CDNs”, IEEE
Networking, 2016.

16. J. Llorca, A. M. Tulino, M. Varvello, J. Esteban, D. Perino, Member, “Energy Efficient Dynamic Content Distribution”, IEEE Journal
on Selected Areas in Communications, Vol. 33, No. 12, pp. 2826-2836, 2015.

17. M. Barcelo, J, Llorca, A. M. Tulino, N. Raman, “The Cloud Service Distribution Problem in Distributed Cloud Networks”, 2015 IEEE
International Conference on Communications (ICC2015), London, 2015.

18. J, Llorca, C. Sterle, A. M. Tulino, A. Sforza. A. Esposito, “Joint Content-Resource Allocation in Software Defined Virtual CDNs”,
2015 IEEE International Conference on Communications (ICC2015), London, 2015.

