A Network Evolution Story:

from Communication, to Content Distribution, to Real-Time Computation

Antonia Tulino
Universita degli Studi di Napoli Federico Il & Tandon School of Engineering NYU



Outline

e Communication

e Content Distribution

. . . Information
Efficient Content Storage and Delivery Stochastic Theory ,
Optimization Ranc_il%m Matrix
. . eor
* Cache-aided coded multicast Y
L . Communication | Nefwork Theory ¢ stgfistica
* Distributed network compression and Coding Physics

* Dynamic Data

* Real-time Computation
Efficient Service Configuration (Storage/Computation/Delivery)
« Network Slicing (NFV/SDN)
* Mobile Edge Computing (MEC)

* Real-time Stream processing



Acknowledgements

NOKIA Bell Labs

» Jaime Llorca, Marc Roelands, Alessandra Sala, Narayan Raman, Nakjung Choi, Danny Raz (now Technion).

¢NYU NEW YORK UNIVERSITY

* Elza Erkip, Parisa Hassanzadeh.

USC 500TmmRN caLirorNiA
* Giuseppe Caire (now TUB), Andreas Molisch, Mingue Ji (now Utah), Hao Feng.

The University of Texas at Austin

* Alex Dimakis, Karthikeyan Shanmugam.

I BN Massachusetts
I I Institute of
Technology

* Jianan Zhang, Abhishek Sinha, Eytan Modiano.

Y Yale University

» Konstantinos Poularakis, Leandros Tassiula.

U " BUniversitat Autonoma
B de Barcelona

*  Marc Barcelo, Jose Vicario, Antoni Morell



CLOUD-INTEGRATED NETWORKS AS UNIVERSAL COMPUTE PLATFORMS
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Core cloud Edge cloud

(5G & beyond) cloud-integrated networks will become universal general-purpose compute platforms,
where a large variety of services and applications will be deployed in the form of slices within a common

physical infrastructure taking advantage of the cloud network’s reach, elasticity, and flexibility.

M. Weldon, “The Future X Network: A Bell Labs Perspective,” CRC PRESS, October 2015.
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Cloud Network Slice

* Ideal for next generation APP

services

1) Network services

* 5G slices

2) Automation services
Smart X, IoT

3) Augmented experience services
Virtual X, Augmented X (e.g. reality/cognition)
Immersive video

Real-time computer vision/scene analysis
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Cloud Network Slice

* Opportunities
e Users can consume
resource- and interaction-

intensive applications from
resource-limited devices

* Operators can reduce costs
and create new value-
added services

* Overall sustainability

APP
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Cloud Network Slice
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- Network function virtualization (NFV) 90

- Software defined networking (SDN) Q@ ® : Y . 0@
- Network Slicing ' """" > ' ‘ '

- Advance RAT (Turning space in bandwidth) “ .

)

oQ
- Network densification, ' EB@
@

- Massive MIMO & mmW

- D2D communications

Elastic Cloud

. . . . . . . Elastic Network
- Cooperative information sharing (Turning Memory in bandwidth)  Resources

Resources

- Cooperative (edge) caching,

- Network coding, .1 ﬂt ﬁt

- multicast transport

- Network Compression Obj@CﬁVes
* Understand the fundamental efficiency limits of the future networked cloud

* Develop practical solutions that push the network closer to its limits



“ NFV: move hardware appliances into software functions deployed
at multiple cloud locations and elastically scaled computing
resources.

% SDN: program the network in between and steer network flows
through the appropriate set of functions.

% Network slicing: create cloud network slices which are hence
elastic and programmable.

Elastically allocate both cloud (storage and computing) and network
resources according to changing demands, in order to meet service
requirements while minimizing the use of the physical
infrastructure.
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Cloud Network Slice

- Network function virtualization (NFV)
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TOWARDS REAL-TIME AUGMENTED COGNITION

Communication
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* Resource limited

* |Interaction limited
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Communication Content Distribution
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TOWARDS REAL-TIME AUGMENTED COGNITION

Communication Content Distribution Real-time Computation

>

Q

« Resource limited » Resource intensive * Resource intensive

 |Interaction limited * Interaction limited * Real-time interaction

Bridging the time-scale gap between information capture/sensing, analysis/processing, and delivery/consumption



Outline

* Content Distribution
Efficient Content Storage and Delivery

* Cache-aided coded multicast
Communication Network Theory

* Distributed network compression anghggg;ng

* Dynamic Data
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The Wireless Bottleneck

$ Unicast traffic

Multicast Wireless edge caching
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The Wireless Bottleneck

Approaches
FemtoCaching: Caching at the infrastructure side (SBS, Helpers)

M: Memory at femtocaching E E B o~

N: number of files
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The Wireless Bottleneck

Approaches
FemtoCaching: Caching at the infrastructure side (SBS, Helpers)

2
M: Memory at femtocaching a
N@‘Tf’ﬁ %l@lﬂ@..o

N: number of files

E Rate = Load = Delay
Edownloader o
g Coud average number of transmissions
oad =
bt File size

h-"

Requires infrastructure nodes to grow linearly with the users.



The Wireless Bottleneck

Approaches

D2D Caching: content replication and multi-hop.

(@ é UE with cache

M: Memory at user device //’A

/ BS
N: number of files ! _(b)
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The Wireless Bottleneck

Approaches

D2D Caching: content replication and multi-hop.

M: Memory at user device

Rate = Load = Delay

N: number of files
average number of transmissions

File size

Requires no infrastructure but very hard to implement
* no good D2D standard in place,
* coordination across a large network



The Wireless Bottleneck

Source
Question: @ N=2 files
Can we achieve scalability with finite infrastructure and v/
no D2D communication? Cache-Aided Coded Multicasting

- = -
Yes we can!

Cache-Aided Coded Multicast (CCM):

Main Idea: L& | LA
* leverages side information at wireless edge caches to j
user

efficiently serve jointly multiple unicast demands via common 1 file Stored at each
multicast transmissions, K=2 users
Requested files
* leads to load reductions that are proportional to the
aggregate cache size.



Cache-Aided Coded Multicast

Source
\\\—// N files

&

Fractional Cooperative Caching (Cache Encoder)
 Split files into F packets and store them strategicall

U1 U2 e o o K users

Coded Multicast
* Coded multicast transmission simultaneously serv
multiple distinct requests via index codin

Cache
M files

Delivery Phase Caching Phase



Cache-Aided Coded Multicast

Normalized user’s cache size

@ SNOfLiJIr;acse i of cache size -
| | ink o constan
M/ num. of files -

Fractional Cooperative Caching (Cache Encoder)
 Split files into F packets and store them strategically

o o o K users
i - Coded Multicast
Cache * Coded multicast fransmission simultaneously serve

M files multiple distinct requests via index coding




Cache-Aided Coded Multicast

Normalized user’s cache size

N files

@ source ik of cache size -
| | ink o as a constan
M/ num. of files

Fractional Cooperative Caching (Cache Encoder)
 Split files into F packets and store them strategically

K users

Coded Multicast
Cache * Coded multicast fransmission simultaneously serve
M files multiple distinct requests via index coding

In the relevant regime of KM > N (i.e. KLL >> 1)

Local caching gain

LoaafzK(l _QL%@(l/u) ~ 0(1)

1 +(§: 2
M Global caching gain




Cache-Aided Coded Multicast

N files

\

U1 U2 e o o K users
Cache
M files

(Index) Coding turns unicast traffic into
multicast traffic

Normalized user’s cache size

cache size
Think of

as a constant
num. of files

Fractional Cooperative Cachina (Cache Encoder)
+ Split files into F p 2 them strategically

Index Coding

Coded Multicast with a twist

* Coded multicast
multiple distinct reg.

dneously serve
ex coding

In the relevant regime of KM > N (i.e. KLL >> 1)

Local caching gain

LoaafzK(l _QL%@(l/u) ~ 0(1)

1 +(§: 2
M Global caching gain




Index Coding
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Source
N files
° Us
Xy
Has:
Xs Wants:

Source: Broadcasts to all users.
Each transmission is 1 file.

Side information allows savings

Minimum number of transmissions?

X1

S

X
9 3 Graph Coloring solution
X,




Index Coding

\\\\\‘% Source: Broadcasts to all users.

Each transmission is 1 file.

Side information allows savings

X } Has:
X1 X X3 Wants:

Minimum number of transmissions?

IC is a fundamental and challenging problem
(Birk & Kol'98; Bar-Yossef et al.; Alon et al.; El Rouayheb et al.; Effros et al.; Maleki et al.)



At the beginning...

* Maddah-Ali, and Niesen, 2012. "Fundamental limits of caching”, ArXiv.

« J. Llorca, A.M. Tulino K. Guan, and D. Kilper, 2013 Network-coded caching-aided multicast
for efficient content delivery”, ICC.

* M. Ji, A. M. Tulino, J. Llorca, and G. Caire, 2014 "On the average performance of caching and
coded multicasting with random demands.” SWCS.



Over the vyears...

Several optimality results

* M. Maddah-Ali, and U. Niesen, TIT 2014]: order optimal under uncoded placement.

K. Wan, D. Tuninetti, P. Piantanida, ITW 2016]: optimality under distinct demands K < N and uncoded
placement.

M. Ji, A. M. Tulino, J. Llorca, and G. Caire, TIT 2017]: order optimal for arbitrary popularity distribution

Q. Yu, M. A. Maddah-Ali, S. Avestimehr, TIT 2018]: optimal for uncoded placement.

Q. Yu, M. A. Maddah-Ali, S. Avestimehr, TIT 2019]: optimal within a factor of 2 (no restriction on
placement).



Over the vyears...

Several optimality results

* M. Maddah-Ali, and U. Niesen, TIT 2014]: order optimal under uncoded placement.

K. Wan, D. Tuninetti, P. Piantanida, ITW 2016]: optimality under distinct demands K < N and uncoded
placement.

M. Ji, A. M. Tulino, J. Llorca, and G. Caire, TIT 2017]: order optimal for arbitrary popularity distribution

Q. Yu, M. A. Maddah-Ali, S. Avestimehr, TIT 2018]: optimal for uncoded placement.

Q. Yu, M. A. Maddah-Ali, S. Avestimehr, TIT 2019]: optimal within a factor of 2 (no restriction on
placement).

Gains of CCM unbounded for uniform distribution, M/m=1/10, n=1000 users, only 10 transmissions!

— cache size
J:oac[z K(l :u) Think of @E FEl as a constant
num. o (S}
1 _I_ K’u Normalized per user cache size

BUT Still very far from achieving these gains because of two main technical barriers




Technical Barriers

M B cache size tant
N  num. of files a5 a constan

Gains of CCM theoretical unbounded Think of 1=

KA —p)
Load = ey

BUT Still very far from achieving these gains because of two main technical barriers

* Coding Complexity
— Number of packets grows exponentially with number of
caches.
— How should F scale as a function of M,m,n to get these gains?

* Heterogeneous Channels

— Different caches have different channels: worst cache channel
dictates the overall performance

— How fto include channel coding in order to maintains the gains.



Technical Barriers

M cache size tant
— = as a constan
N num. of files

¢ Coding Complexi’ry Think of 1 =

— How should F scale as a function of MK,N to get these gains?

1 File/trans. Library - N Files

o e

Think of 1= N - num. of files

Take a file from
the library

Split into F packets and
place strategically +
XOR packets during delivery.

as a constant

U2 o o o
B
B N

Key Question: How large F needs to be ?

F=exp(Kf(u)) =exp(0(K)) dlﬁor:iii:rz;ll::teorzecsar;:rzsber of packets grows exponentially




Coding Complexity

Centralized

) M cache size
Think of © = N~ oum of files as a constant

F=exp(Kf(n) =exp(O(K)) [all schemes up to 2016] .

Very practical schemes  Exponentially smaller !!

F=Kpu>K [Shanmugam, Tulino,
Load=0(1) , then F=K is impossible !

All these results are about constructions of RUZSA-SZEMEREDI

F =exp(gf'(p))

F=exp(Kf"(u)) =exp(0(K)) [Tang-Ramamoorthy ‘17, Yan et al '16]

F = exp <\/Ef” (,u)) = exp <@(\/E)) [Yan et al ‘16, Shangguan et al ‘16]

Caching gain = K

—1  foad=0 (Kﬁu) =0(1)

—— | Caching gain = K!-¢

—

Dimakis 2017] Ll foad < K¢

_—

bipartite graphs

[Hachem et al '17], [Lampiris et al "18], [Parrinello et al "18]

[Jin, Cui, Liu, and Caire. TC, 2019

Level of cache coordination

PHY: leveraging spatial multiplexing

Load =0 (Kﬁﬂ) =0(1)

[Shanmugam, Ji, Tulino, Llorca Dimakis 2016]

Load= 0O (E)

g

users are grouped

F = exp (K f(1) = exp (O(K))
Caching gain = K

Distributed

F =exp (g9 (1)) = O(n)
Caching gain = g



Technical Barriers

M B cache size tant
N  num. of files a5 a constan

Gains of CCM theoretical unbounded Think of 1=

KA —p)
Load = ey

BUT Still very far from achieving these gains because of two main technical barriers

* Coding Complexity
— Number of packets grows exponentially with number of
caches.
— How should F scale as a function of M,m,n to get these gains?

* Heterogeneous Channels

— Different caches have different channels: worst cache channel
dictates the overall performance

— How fto include channel coding in order to maintains the gains.



Heterogeneous Channels

K\VJJ

A

Source
N files

K

N. channel rate of user u

Library Realization
Scheduled Packets
Cache Contents

Channel Conditions

Ny =N =common channel rate

Separation Source-Channel Coding theorem:

Y

Achievable rate =n/ Load

| X[1]
—
S{W; : f € F},F,Z,) Channel . @
Coded —>| Encoder || @

-
! Caching (ChEn) |
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Heterogeneous Channels

Source
N files

%

K

N. channel rate of user u

Library Realization
Scheduled Packets
Cache Contents

Channel Conditions

N, channel rate different across users

Separation Source-Channel Coding theorem:

Y

Achievable rate =, / Load

| X[1]
—
S{W; : f € F},F,Z,) Channel . @
Coded —>| Encoder || @

-
! Caching (ChEn) |
=



Heterogeneous Channels

Source
N files

%

K

N. channel rate of user u

Library Realization
Scheduled Packets
Cache Contents

Channel Conditions

To improve performance, need for joint
source-channel coding scheme

Separation Source-Channel Coding theorem:

<

Achievable rate = n,/ Load

| X[1]
—
S{W; : f € F},F,Z,) Channel . @
Coded —>| Encoder || @

| Caching CWorst ) | (Chen) |’



Heterogeneous Channels

ﬁ'rwo Caches [Asadi-Ong-Johnson, 2015]

* Capacity-memory trade off of two cache-aided receiver broadcast channel.
* Each receiver side information is part of the private message of the other.

v Multiple Caches divided in two classes:
 [Karamchandani-Diggavi-Caire-Shamai, 2016]
— Two links (1 & 2) between caches and source.

— One class receiving only from link 1 the other from both links cache size M.
* [Bidokhti-Wigger-Timo, 2016]
— Weak receivers with equal “large” BC erasure probabilities and cache size M.
\ — Strong receivers with equal “small” BC erasure probabilities with zero cache-size.

— This especially useful in a designing phase for dimensioning the caches

~

Special settings

/

v'General Setting [Cacciapuoti-Caleffi-Ji-Llorca-Tulino, 2016]

* Channel, cache size, demand distribution, number of requested files arbitrary across users

¢ Random Fractional Caching
* Channel-Aware Chromatic Index Coding



Extension to different network topologies

Tree Topology: Multiserver/linear network
CM with routing at intermediate
nodes
SHINE ()—f F=i o
(Secure Hybrid In Network caching Environment) Linear | =
n — : Network
. org e & o} ~ e R @_. y—Hx | =
(1] 1 ]== | g N - S — (:y__+ _€§4C>_*
CIC 1 . mm) R ol — =

Shared Caches




Combination network

« Ji, M., Wong, M.F, Tulino, A.M., Llorca, J., Caire, G., Effros, M. and Langberg, M., IEEE SPAWC 2015 .
« M. Ji, A. M. Tulino, J. Llorca, G. Caire, TEEE ASILOMAR, 2015

* Kai Wan, Daniela Tuninetti, Mingyue Ji, and Pablo Piantanida, TEEE ASILOMAR, 2017

Simple achievable scheme: concatenation of classical Cache-Aided Coded Multicast (CCM) and
MDS coding combined with naive multicasting of all the library and routing (naive unicast), is

given by: e K (1 N
(] (] e o /Jl/)
- NS —_— 1 —_
Maximum link load = Load = mlﬂ{ . (1 — ), FA+Kp) T }

t optimal BU tely + -agnostic.
not optimal BUT completely topology-agnostic relaySmith

h
Recently extensions with caches at the relays no cacnes



Shared Caches

* Hachem, Karamchandani, Diggavi, TIT 63(5), 2017,
* G. Vettigli, M. Ji, K. Shanmugan, J. Llorca, A. Tulino, G. Caire, MDPI Entropy, March 2019
* Parrinello, Unsal and Elia, arXiv:1809.09422, : 2018

The goal is to minimize the worst-case load over the shared link (backhaul).

Each user receives from L distinct BSs Each user receives from one BS with Ny antennas
number users served by each BS > Ng

L = BSs serving each user
K(1—Lp)
1+ Ku

Interplay between shared caches and multiple antennas:
adding 1 degree of cache-redundancy increases a DoF fo NO,
going from 1 fo No antennas reduces delivery time by NO.



SHINE & B %

Secure Hybrid In Network caching Environment .

7
S. P. Romano, C. Roseti, A. M. Tulino, ISNCC, 2018 %
SHINE: Secure Hybrid In Network caching Environment, ESA Project 2017-2019 *

Goal:
E2E secure delivery of multimedia content over integrated
satellite-terrestrial cache-aided networks.

Combination of both unicast and network-coded multicast
Two main building blocks:

x a satellite-enabled broadcast distribution backbone leveraging the CCM in order to improve both
performance and security of the transmissions;

a MPEG-DASH/WebRTC-enabled edge distribution network.

(i) relying cache-aided coded multicast to improve both performance and security of communications.

(ii) leveraging cutting-edge streaming technologies (MPEG-DASH WebRTC) to optimize E2E content distribution



Dynamic Network Compression

So far...

used previously in-network stored exact copies of the information that need to be
delivered as references for network compression during delivery

~ &

Cache-Aided Coded Multicasting

Exect Content
Matching

Lk

Requested files



Dynamic Network Compression

So far...

used previously in-network stored exact copies of the information that need fo be
delivered as references for network compression during delivery

Source
N=2 files
BUT (s)
Moving towards real-time \\VJ

(Personalized media domina’red) Cache-Aided Coded Multicasting

services exact cache hits are - e -

almost non-existent.

Exect Content

Matching Updated versions of dynamic data

“

can exhibit high levels of correlation

Requested files



Dynamic Network Compression

Compressing information as it fravels through the network

FROM STATIC LOCAL COMPRESSION TO DYNAMIC NETWORK COMPRESSION

Static local compression is myopic to spatiotemporal
information lifecycle
We still compress information based solely on local intra-file

correlations, without taking into account increasingly relevant
network-wide spatiotemporal correlations

Dynamic e2e compression adaptively exploits redundancy
throughout the network

Exploiting cloud network wide spatiotemporal redundancy to push
the fundamental limits of information compression




Towards dynamic E2E network compression

Cache-Aided Coded Multicast with Correlated library

[Timo, Bidokthi, Wigger and Geiger TIT'18]:
* Lossy reconstruction.
« Two receivers and one cache, no coded multicasting.

[Op * Veld and Gastpar ISIT'17]:

* Lossy reconstruction Gaussian sources.
* Distortion-rate-memory region two files.

[Yang and Gunduz ICC'18]:
* Specific correlation structure.
* Worst-case rate-memory trade-off.

[Hassanzadeh, Tulino, Llorca, Erkip, ITW'2016, TIT 20]
Lossless reconstruction.

Arbitrary correlated sources.

Dynamic content.

General system parameters, prove optimality in some cases.



Towards dynamic E2E network compression

Cache-Aided Coded Multicast with Correlated library

* Library Compression Approach

* Two step approach:

* Step 1: Sender jointly compresses the library.
Gray-Wyner source-coding.

* Step 2: Correlation-unaware caching and coded multicast.
Multiple-request scheme.

* On-demand Compression Approach
* Store individually compressed.
* Deliver jointly compressed



Towards dynamic E2E network compression

Cache-Aided Coded Multicast with Correlated library

* Library Compression Approach

* Two step approach:

* Step 1: Sender jointly compresses the library.
Gray-Wyner source-coding.

* Step 2: Correlation-unaware caching and coded multicast.
Multiple-request scheme.

» Effective for Static Library
* On-demand Compression Approach
* Store individually compressed.
* Deliver jointly compressed



Towards dynamic E2E network compression

Cache-Aided Coded Multicast with Correlated library

* Library Compression Approach

* Two step approach:

* Step 1: Sender jointly compresses the library.
Gray-Wyner source-coding.

* Step 2: Correlation-unaware caching and coded multicast.
Multiple-request scheme.

* On-demand Compression Approach
* Store individually compressed.
* Deliver jointly compressed

« Effective for Dynamic Library



Towards dynamic E2E network compression

Cache-Aided Coded Multicast with Correlated library

* Library Compression Approach (two step approach):
* First compress the library
* Then apply a correlation unaware CCM (Cache-aided Coded Multicast) scheme

which assume independent files and consisting of
* a cache phase (to populate caches)
* a delivery phase

Correlation-Aware Caching Scheme _., 1 1( Cache |

|
|
. I ) Correlation Unaware
I;,Ibra ry F : L|brary. Cache-aided Coded
Wi, .., Wy , | Compression Multicast scheme
|

Compressed K [ Cache ]
Library

— 2 Cache




Towards dynamic E2E network compression

Cache-Aided Coded Multicast with Correlated library

* Library Compression Approach (two step approach):
* First compress the library
* Then apply a correlation unaware CCM (Cache-aided Coded Multicast) scheme

which assume independent files and consisting of
* a cache phase (to populate caches)
* adelivery phase

Correlation-Aware Caching Scheme —>r 1 1( Cache |

__________________________ 1 \. J
I I
| ) I 4 N
Librar I _ Correlation Unaware i BN 2 Cache
F y F : | SGray sz:?r - Cache-aided Coded I L )
Wi, .., Wy I s Multicast scheme :
|
| s ———— :
-
Compressed K [ Cache ]

Library



Example two files

Approach 1

_______________________________

[

Library |
WlF' 2F :

Gray-Wyner
Source Coding

Correlation-
Unaware Scheme

(D)

_______________________________

Common Sub-library

Gray-Wyner
Source Coding

Xo

Private Sub-library

X1

X2

— 2 ][ Cache ]

* Multiple-request scheme:

* particular demand.

* Treat sublibraries independently.



Towards dynamic E2E network compression

Cache-Aided Coded Multicast with Correlated library

 Library Compression Approach (two step approach):

[

Library
wk, ., wE

~

|

I

: Gray-Wyner R
' | Source Coding

|

Multiple-Request

—

d N 7
\ J \

Cache

2

4 N
Cache
\ )

Cache Encoder

D ———

————————————

|

|

: Gray-Wyner | |

' | Source Coding
J

|

|

Multiple-Request

4 N\
Cache
\ J

( N\
Cache
\ )

AW 4 N
Cache
_J

*  Caching Phase

. Delivery Phase

Multicast Encoder

Cache

Cache

Mult.lple-Request Gray-Wyner —>W,f
Multicast Decoder Decoder




Towards dynamic E2E network compression

Cache-Aided Coded Multicast with Correlated library

 Library Compression Approach (two step approach):

Gray-Wyner
Source Coding

—>

d N 7
\ J \

Cache

2

4 N
Cache
\ )

Multiple-Request
Cache Encoder

- o m m m m m m fl — m— m— — — — — — — — — ——

——————————————————————————

N
Library
wk, ., wE )

Gray-Wyner
Source Coding

Multiple-Request

4 N\
Cache
\ J

( N\
Cache
\ )

AW 4 N
Cache
_J

Multicast Encoder

Cache

Cache

*  Caching Phas)

Then apply multiple request CCM
scheme for independent files.

. Delivery Phase

Multiple-Request _| Gray-Wyner ‘—»W,f

Multicast Decoder Decoder




Library Compression Approach
Optimality Results:

e Two files and K users:

* Optimal for small and large memory.
* Half of the conditional entropy of files elsewhere.

* Two files and two users:
* Optimal over a larger region.
« Optimal for special source.

e Extension to three files:

* Optimal for large memory.
e Half of H(W,, W, | W3) elsewhere.

* Lower bound on the optimal load-memory trade-off.

Shortcomings of this Approach
* Not robust to system dynamics: a new file is added.

» Jointly re-compressed entire library.
* Update receiver caches.

* General setting with multiple files and receivers.



On-demand Compression Approach

*  Caching Phase

Library
wk, .., wE

. Delivery Phase

Library
wfk, .., Wi

1 Cache ,
J Correlation-Aware Cache Encoder.
, ) + Divide each file into equal-size packefs.
Multiple-Request 2 Cache . Cache b d lati d larit
Cache Entoder J ache based on correlations and popularity.
K Cache ] Very Efficient in Dynamic content services.
1 Cache
, \ Correlation-Aware Multicast Encoder
Correlation aware 2 Cache
Multiple Requests | | ) * Use network cached information as
Multicast Encoder : (cacre reference for compression during delivery.
) Correlation Aware
— A
K Cache ) Multiple-Request —>W;f

Multicast Decoder




Cache-Aided Coded Multicast with Correlated library

1.5

—o— Correlation-Unaware Scheme

—+ On-demand Compression-Based
—*= Library Compression-Based r 4 Static library.
— Lower Bound

* Two files and two

Load

receivers.

* Deterministic cache
placement.

0 0.5 1 1.5 2




Cache-Aided Coded Multicast with Correlated library

Performance assessments

N = 1000 files. /

Cache size M = 0.1x library size. Correlation parameter 6 = 0>3

N = 30 file
K= 10 users
orrelation parameter 6 = 0>3

Un-coded
Exact match Coded low complexity
Correlation-aware Coded Low Complexity

Load

Turning memory
into Bandwidth

Load

—e— Correlation-Unaware Scheme
=4+ On-demand Compression-Based

L, 20 30 %40 50
” K users




Efficient Storage of Dynamic Data in Distributed Clouds

Rapid access to fresh and consistent data without costly replication
[Wang and Cadambe, TIT’14], [Ali, Cadambe, Llorca, Tulino, TC’20]

p=
‘¢ Google Drive
> o

W
r——

— Storage Cluster

Replication +

O

iCloud
SugarSync*
BIG CHALLENGE BASELINE BREAKTHROUGH

Extend the benefits of distributed cloud Existing systems dont use coding and end up  Holistic analytical understanding of the

storage (low latency access, robustness to  unnecessarily keeping old versions to ensure fundamental trade-offs between
failures) to highly dynamic applications, consistency via replication (e.g., Microsoft consistency, freshness, storage cost, and
where the main challenges are data Azure) leading to unbearable cloud resource  access latency. Efficient codes able to
freshness and consistency usage, specially for highly dynamic data. approach such fundamental trade-offs.

A NOVEL INFORMATION THEORETIC FRAMEWORK FOR CONSISTENT DELIVERY
OF FRESH DYNAMIC DATA



Outline

om Matrix
Theory

Communication Network Theory

and Coding
Theory

* Real-time Computation
Efficient Service Configuration (Storage/Computation/Delivery)
* Network Slicing (NFV/SDN)
* Mobile Edge Computing (MEC)

* Real-time Stream processing



CLOUD-INTEGRATED NETWORKS AS UNIVERSAL COMPUTE PLATFORMS

Cloud Network Slice

APP

Every human experience will be supported by a collection of services running over a cloud-integrated
network.

M. Weldon, “The Future X Network: A Bell Labs Perspective,” CRC PRESS, October 2015.
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CLOUD-INTEGRATED NETWORKS AS UNIVERSAL COMPUTE PLATFORMS

Cloud Network Slice

APP

These services take information sources from the physical world, route them through multiple
functions instantiated across the cloud network until delivering output flows that create some form of
augmented value for the end user

M. Weldon, “The Future X Network: A Bell Labs Perspective,” CRC PRESS, October 2015.

65



CLOUD-INTEGRATED NETWORKS AS UNIVERSAL COMPUTE PLATFORMS

Cloud Network Slice

N
NN
SN

* Opportunities

Users can consume

@ : . '. @ APP
resource- and interaction- @ o ((‘ ........ ' 0 .
Q

3

intensive applications from
resource-limited devices

* Operators can reduce costs
and create new value-
added services

* Overall sustainability “ J
@0

* Challenges

. Op’rlmlzeq elastic Elastic Cloud Elastic Network
consumption of Resources Resources

compute/storage/network
resources : .
* End-to-end autonomous .I ﬂtﬁt @

configuration and control
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CLOUD NETWORK OPTIMIZATION AND CONTROL

Reconf. Centralized,
cost/time proactive

Physical resource allocation (months, weeks)

- Physical site/link deployment/consolidatio

- Compute/storage/network equipment

Service distribution (days, hours)

- Data/function placement/migration

- Cloud/network vResource allocation

Virtual resource auto-scaling (minutes, seconds)
- Virtual resource scale up/down

- Virtual resource scale out/in

Information flow (seconds, milliseconds)

- Request routing
- Flow scheduling
- Load balancing

Distributed,
reactive
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CLOUD NETWORK OPTIMIZATION AND CONTROL

Reconf. Centralized,
cost/time proactive
* Physical resource allocation (months, weeks)

- Physical site/link deployment/consolidatio
- Compute/storage/network equipment
) L * E2E Service Optimization
* Service dlsfrlbuflon (days,.hour.‘s) - Function placement and flow routing
- Data/function placement/migration ,
- Cloud/network vResource allocation - Cloud/network resource allocation
- Cenftralized solution with average
* Virtual resource auto-scaling (minutes, seconds) demand knowledge
- Virtual resource scale up/down
- Virtual resource scale out/in

e Information flow (seconds, milliseconds)
- Request routing
- Flow scheduling
- Load balancing

Distributed,
reactive

* Barcelo, Llorca, Tulino, Raman, “The Cloud Service Distribution Problem in Distributed Cloud Networks,” IEEE ICC, 2015.

* Barcelo, Llorca, Tulino, Morell, Vicario, "IoT-Cloud Service Optimization in Smart Environments,” IEEE JSAC, 2016.

* Feng, Llorca, Tulino, Raz, Molisch “Approximation Algorithms for the NFV Service Distribution Problem,” IEEE INFOCOM, 2017.

* Poularakis, Llorca, Tulino, Tassiulas, “Joint Service Placement and Request Routing in Multi-Cell Edge Computing Networks,” IEEE INFOCOM, 2019.
* Michael, Llorca, Tulino, “Approximation Algorithms for the Optimal Distribution of Real-time Stream-Processing Services,” IEEE ICC, 2019
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CLOUD NETWORK OPTIMIZATION AND CONTROL

Reconf. Centralized,
cost/time proactive
* Physical resource allocation (months, weeks)

- Physical site/link deployment/consolidatio
- Compute/storage/network equipment
* Service distribution (days, hours)
- Data/function placement/migration
- Cloud/network vResource allocation
* Virtual resource auto-scaling (minutes, seconds)
- Virtual resource scale up/down
- Virtual resource scale out/in
e Information flow (seconds, milliseconds)

* E2E Service Optimization
- Function placement and flow routing

- Cloud/network resource allocation

- Cenftralized solution with average
demand knowledge

* Dynamic Service Control

- Dynamic flow scheduling and virtual
resource auto-scaling

- Distributed online solution

- Request routing
- Flow scheduling
- Load balancing

Distributed,
reactive

* Feng, Llorca, Tulino, Molisch, “Dynamic Service Optimization in Distributed Cloud Networks,” IEEE INFOCOM SWFAN, 2016.

* Feng, Llorca, Tulino, Molisch, “On the Delivery of Augmented Information Services over Wireless Computing Networks,” IEEE ICC, 2017.

* Zhang, Sinha, Llorca, Tulino, Modiano, “Optimal Control of Distributed Computing Networks with Mixed-Cast Traffic Flows,” IEEE INFOCOM, 2018.
* Feng, Llorca, Tulino, Molisch, "Optimal Dynamic Cloud Network Control,” IEEE/ACM Transactions on Networking, 2018.

* Feng, Llorca, Tulino, Molisch, "Optimal Control of Wireless Computing Networks,” IEEE Transactions on Wireless Communications, 2018.
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CLOUD NETWORK OPTIMIZATION AND CONTROL

Reconf. Centralized,
cost/time proactive

* Physical resource allocation (months, weeks)
- Physical site/link deployment/consolidatio THIS TALK
- Compute/storage/network equipment N\
) L * E2E Service Optimization
* Service dlsfrlbuflon (days,.hour.'s) - Function placement and flow routing
- Data/function placement/migration ,
- Cloud/network vResource allocation - Cloud/network resource allocation

- Cenftralized solution with average

* Virtual resource auto-scaling (minutes, seconds) demand knowledge )

- Virtual resource scale up/down
- Virtual resource scale out/in

* Dynamic Service Control

- Dynamic flow scheduling and virtual

e Information flow (seconds, milliseconds) :
resource auto-scaling

- Request routing >S0u . .
- Flow scheduling - Distributed online solution

- Load balancing

Distributed,
reactive

Barcelo, Llorca, Tulino, Raman, “The Cloud Service Distribution Problem in Distributed Cloud Networks,” IEEE ICC, 2015.

Barcelo, Llorca, Tulino, Morell, Vicario, “IoT-Cloud Service Optimization in Smart Environments,” IEEE JSAC, 2016.

Feng, Llorca, Tulino, Raz, Molisch “Approximation Algorithms for the NFV Service Distribution Problem,” IEEE INFOCOM, 2017.

Poularakis, Llorca, Tulino, Tassiulas, “Joint Service Placement and Request Routing in Multi-Cell Edge Computing Networks,” IEEE INFOCOM, 2019.
Michael, Llorca, Tulino, “Approximation Algorithms for the Optimal Distribution of Real-time Stream-Processing Services,” IEEE ICC, 2019
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JOINT END-TO-END SERVICE OPTIMIZATION

APP 4 \

f
(——
Function Flow

Placement “ Routing

| 8 ]

\ Cloud Network
\ resource “ resource

k allocation allocatiory

* Function placement

- Function chaining, splitting, and replication

* Flow routing
- Flow scaling

- Mix of unicast and multicast traffic
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EXISTING APPROACHES
COMPLEX DISJOINT SOLUTIONS

APP 4 .. \

e
” —
Function Flow

Placement “ Routing

N ]

\ Cloud Network
\ resource “ resource

k allocation allocatiory

- . .
Facility Multi-commodity

Location Flow

Separate data/function placement, flow routing, cloud and network resource allocation

* Driven by old vision of cloud and network separation

* No joint placement/routing optimization

* Unacceptable QoE, limited knowledge augmentation, and/or unsustainable costs with resource overprovisioning.
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CLOUD NETWORK FLOW APPROACH

APP 4 \

f
(—
Function Flow

Placement “ Routing

I ]

\ Cloud Network
\ resource “ resource

\ allocation allocatiory

-
CLOUD NETWORK FLOW

* Comprehensive model
- Arbitrary flow chaining, scaling, splitting, and replication
- Arbitrary traffic mix (unicast and multicast flows)

- Non-isomorphic embeddings

* Approximation guarantees
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CLOUD NETWORK FLOW APPROACH

1. Service Graph

Service ®
0

Graph o, l 04
® >® >® @

* Directed acyclic graph that encodes the relationship
between service functions and associated
input/output flows
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CLOUD NETWORK FLOW APPROACH:

1. Service Graph

L Network Service
APP (e.g., Fixed Residential Video)

Service T @
Graph o, 0, 03 l 0,
o >0 >Q® @ vCPE VFAN
Control

. Video
Video . [ E/. ‘ ' source/

* Directed acyclic graph that encodes the relationship consumption oot e NG con capture
between service functions and associated ' '
input/output flows

Vertical Service
* Control/data plane as well as hardware/software APP (e.g., Augmented Reality)

based functions

. . . Stream 1
* Heterogeneous function complexity (proc. res. units Personalized
per flow unit) and flow scaling (output flow units Stream &
per input flow unit) \ Stream 2

Flow Scaling
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CLOUD NETWORK FLOW APPROACH
2. Cloud-augmented graph

B |
]
Service T SO;JtI’CE‘g
Graph orage
P o——o LA 4 03 Il.. Sensing
- Demand
— Transport
9. -t .
Cloud- (211 M « N \ '
Augmented 22...0-¢ ; NG |
Graph t
23 fu

Compute
Memory \

CPU
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CLOUD NETWORK FLOW APPROACH
2. Cloud-augmented graph

B |
]
Service I SO;JtI’CE‘g
Graph orage
P o——o LA 4 03 Il.. Sensing
- Demand
— Transport
9. -t TSNS
Cloud- 92... Q- \ '
Augmented gg... - ; N ]
Graph ' ' 1
23 Ju

Compute
Memory \

CPU
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CLOUD NETWORK FLOW APPROACH
2. Cloud-augmented graph

Service
Graph

Cloud-
Augmented
Graph
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CLOUD NETWORK FLOW APPROACH

Service T ® * Mixed-cast multi-commodity-chain flow on a
0, 03

Graph o i o, cloud-augmented graph
® >® >® ®

— * Includes and generalizes placement and network
flow problems

Cloud- 88" A j}&c‘; * Captures combined use of
Augmented 29..@ -WV"‘ Vé\\ compute/storage/transport resources, unicast and
Graph \Q%‘» 4’#’/ : . .
P 00, . .@ \?E?’ multicast flows, and flow/function chaining,
@0 i 2,} . s C .
== scaling, splitting, and replication
— . * Admits optimal polynomial time solutions under
Cloud- D\/D o linear costs and splittable flows, and efficient
Network L approximations otherwise
Flow o_> ' PP
Solution ’ 0. o,
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CLOUD NETWORK FLOW

3. Mixed-cast chained information flow

min Z fuv Cuv COSF
%L,U) Function \
di _ d,i : Generalized Flow
s.t. Z fvu %: fuv Vu,d,1 Conservation
v
: : Virtual flows
;iif = f;i;’f Yu,d,i,j € Z(i) Flow Chaining
= Vu,d,i € S(u) Sources and
3(,; =1 Vu,d,i € Q(u) Demands j
d,i i :
< V(u,v),d,
PR ( _ ) Actual flow Actual flows
wv < Juw V(u,v),d, k,i € K(k) sizing
Zf?,vaﬁv < fuv < Cuv V(U,U)

difi, fh €01 Y(u,v),dik

uv ?Juv?

Fractional/
Integer
flows

(d,i)
vu

(d,i)
uv



CLOUD NETWORK FLOW

3. Mixed-cast chained information flow

min fuv € Cost
(uz,q;) o Function
1. dyi _ d,i Va. d. i Generalized Flow
i zv: Fun %: fun o Conservation
;Calzli = fgz’gj Yu,d,i,j € Z(i) Flow Chaining
dyi _ :
o = Vu,d,i € S(u) Sources and
f;f(}i =1 Vu,d,i € Q(u) Demands
w < Fuw V(u,v),d,i
i <k V(u,v),d, k,i € K(k) Actual flow
uv — uv ? P} b Sizing
Zf!vazk;v < fuv < Cuv V(U,’U)

Gt fh e 0,1 Y(u,v),dyi,k

uv ?Juv?

Fractional/
Integer
flows

* Fractional flows
- Good for network slices
- Large aggregate flows

- Per-flow splitting

* Integer flows
- Good for individual services

- Unsplittable flows



SERVICE CLASSIFICATION AND SOLUTIONS

Unicast Multicast

Splittable Unsplittable Splittable Unsplittable

- ----

- ----



SERVICE CLASSIFICATION AND SOLUTIONS

Splittable Unsplittable Splittable Unsplittable

Service Chain

Service DAG




NETWORK SERVICE CHAINS

* Network: Generic US Metro
- 4 Metro PoP, 12 Metro Agg, 60 Metro Edge
- 10G links, CloudBand compute nodes

« Service: Fixed Residential Video foooooooooooooooooooooon

- Data plane: vCDN, vBNG, FAN, CPE VCPE  VFAN
- Control Plane: vCDN, vBNG, vFAN, vCPE
y 04 03 0 04 Video
* Demand: con;/lljnfgtion. . . . f:gl;)l;ceré
- 2014, 2018, 2022 video traffic Eﬁg VBNG VCDN
- 50% VoD, 40% VS, 10% IPTV
2018 traffic
250 250
TCO TCO
(M3) 200 (M5) 200 -
150 m 0% Managed 150 -
= 10% Managed
100 m 50% Managed 100 -
m 90% Managed
50 - 50 -
0 - 0 -

2014 2018 2022 PMO OPT, 0% Managed OPT, 90% Managed



SMART CITY SERVICES

¢ IoT-Cloud Network:  City Streams Service: * Operational cost as a function of
- Cloud layer (core, metro, edge) - Deliver contextually relevant personalized stream data rate
- Access layer personalized city streams

Device layer

©
1

( T Aggregated [ ] glllcl)lydllji?tributed
P (| udile’
°>", Sensor Measurements =8r I Centralized
3 < \ Measurements E [_"11oT-Cloud
o / s \ ' Information A 2
© I\ I Zor
D@ @ ® a— c
o o
= e ™~ ™~ City S5l
- Sensor Information B §
& Measurements 2
8 (WSN2) : g4t
o : .,
...................................................... ity [
8 j‘ / . Ci 2
: L Information C 33
qh) : . - o
) 5 : -3
. : S
:: 1 Sensor 5
o Smart - Measurements <,
E’ Devices :  WSN, WSN, WSN, 5 (WSN3) 5 H
Virtualized Sensing Platform 0 ﬂ
10 100 200

20 50
Personalized Information Rate (kbps)



WORLD WIDE STREAMS (WWS)

* Distributed stream processing platform

* Produces and delivers streams of real-time
relevance to geographically dispersed users via
the real-time processing of geographically
dispersed source streams

A Operators Flows

 reoues - m .
Deployer < e

“ WWS Control
N
L4

@@@

Edge Cloud Core Cloud




WORLD WIDE STREAMS
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CONCLUSIONS

« Networks are becoming universal compute platforms, able to host a variety of services and
applications that can optimize the automated operation of physical systems and augment human
experiences in real time.

 New mathematical tools are required to jointly optimize the allocation of compute, storage, and
network resources, as well as the efficient flow of information over such highly distributed
computing infrastructures.

* Dynamic cloud-network compression aims to an E2ZE compression of information throughout its
entire lifecycle - capture/creation, upload, storage, computation, and delivery - in order to
maximize conveyed information per unit cost

« Using cloud-network-wide spatiotemporal redundancy to push the fundamental limits of
information compression, pioneering algorithms in network compression, including compressed
video delivery with up to 8X capacity gains has been designed.

« Cloud network flow generalizes traditional network information flow models to jointly capture the
efficient storage, computation, and delivery of information of real-time relevance.

 Significant efficiency improvements can be obtained via the end-to-end optimization of next
generation services over distributed cloud-integrated networks.



REFERENCES - CONTENT DISTRIBUTION

1.

10.

11.

12.

13.

14.

R. Ali, V. Cadambe, J. Llorca, A. Tulino, "Fundamental Limits of Erasure-Coded Key-Value Stores with Side Information,” Trans. On
Communications, 2020.

P. Hassanzadeh, A. Tulino, J. Llorca, E. Erkip, "Rate-Memory Trade-Off for Caching and Delivery of Correlated Sources” IEEE
Information on Theory, 2020.

P. Hassanzadeh, A. Tulino, J. Llorca, E. Erkip, Paris.a Hassanzadeh, Antonia M. Tulino, Jaime Llorca, Elza Erkip, “ Trans. On Wireless
Communications, 2020.

G. Vettigli, M. Ji, K. Shanmugan, J. Llorca, A. Tulino, G. Caire, “Efficient Algorithms for Coded Multicasting in Heterogeneous
Caching Networks”, MDPI Entropy, March 2019

P. Hassanzadeh, A. Tulino, J. Llorca, E. Erkip, "On Coding for Cache-Aided Delivery of Dynamic Correlated Content”, IEEE Journal on
Selected Areas in Communication, June 2018.

R. Ali, V. Cadambe, J. Llorca, A. Tulino, "Multi-Version Coding with Side Information," IEEE ISIT, June 2018

R. Ali, V. Cadambe, J. Llorca, A. Tulino, “Bridging the gap between the extremes of complete side information versus no side
information in consistent distributed storage” Information Theory and Applications, 2018,

C. Rosetti, S. Romano, A.M. Tulino, SHINE: Secure Hybrid In Network caching Environment, IEEE International Symposium on
Networks, Computers and Communications (ISNCC), 2018

M. Ji, A. M. Tulino, J. Llorca, G. Caire, “"Order-Optimal Rate of Caching and Coded Multicasting with Random Demands”, IEEE
Information on Theory, Marzo 2017.

Y. Fadlallah, A.M. Tulino, D. Barone, G. Vettigli, J. Llorca, J.M. Gorce, “Coding for Caching in 5G Networks” IEEE Communications
Magazine, Vol. 55, No. 2, pp. 106-113, 2017

P. Hassanzadeg, A. Tulino, J. Llorca, E. Erkip, “Broadcast Caching Networks with Two Receivers and Multiple Correlated Sources”
ASILOMAR, 2017

. Shanmugam, A. Dimakis, J. Llorca, A. M. Tulino, “Coded Caching Main Technical Barriers: Finite Packetization and Channel
Heterogeneity” ASILOMAR, 2017.

P. Hassanzadeg, A. Tulino, J. Llorca, E. Erkip, “Rate-Memory Trade-off for the Two-User Broadcast Caching Network with
Correlated Sources” ISIT, 2017.

K. Shanmugam, A. M. Tulino, A. Dimakis, "Coded Caching with Linear Subpacketization is Possible using Ruzsa-Szeméredi Graphs”
ISIT, 2017.



REFERENCES - CONTENT DISTRIBUTION

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.
24.

25.

26.

K. Shanmugam, M. Ji, A. M. Tulino, J. Llorca, A. Dimakis “Finite Length Analysis of Caching-Aided Coded Multicasting” IEEE
Information on Theory, Vol. 62, No. 10, pp. 5524-5537, 2016.

B. Azari, O. Simeone, U. Spagnolini, A. Tulino “"Hypergraph-Based Analysis of Clustered Cooperative Beamforming with Application to
Edge Caching”, IEEE Wireless Communications Letters, Vol. 5, No. 1, pp. 84-87, 2016.

A. S. Cacciapuoti, M. Caleffi, M. Ji, J. Llorca, A. M. Tulino, “Speeding up Future Video Distribution via Channel-Aware Caching-Aided
Coded Multicast”, IEEE Journal on Selected Areas in Communications, Vol. 34, No. 8, pp. 2207-2218, 2016.

P. Hassanzadeg, A. Tulino, J. Llorca, E. Erkip, “Distortion-Memory Tradeoffs in Cache-Aided Wireless Video Delivery”, 22nd Annual
International Conference on Mobile Computing and Networking (Mobicom’16), New York, USA, October, 2016.

P. Hassanzadeg, A. Tulino, J. Llorca, E. Erkip, “"Memory-Rate Trade-off for Caching and Delivery of Correlated Sources," 37th IEEE
Sarnoff Symposium, Newark, New Jersey, USA, September 2016. (Best paper award).

P. Hassanzadeg, A. Tulino, J. Llorca, E. Erkip, “Correlation-Aware Distributed Caching and Coded Delivery," IEEE Information Theory
Worskhop, (ITW), September 2016.

P. Hassanzadeg, A. Tulino, J. Llorca, E. Erkip, “Caching-Aided Coded Multicast for Correlated Sources," IEEE International
Symposium on Turbo Codes & Iterative Information Processing (ISTC), Brest, France, September 2016. (Invited Talk)

A.S. Cacciapuoti, M Caleffi, M. Ji, J. Llorca, A. Tulino, "On the Impact of Lossy Channels in Wireless Edge Caching”, IEEE
International Conference on Communications (ICC2016), 2016.

J. Llorca, A. M. Tulino, M. Varvello, J. Esteban, D. Perino, Member, “Energy Efficient Dynamic Content Distribution”, IEEE Journal on
Selected Areas in Communications, Vol. 33, No. 12, pp. 2826-2836, 2015.

M. Ji, A. M. Tulino, J. Llorca, G. Caire, “Caching in Combination Networks”, IEEE ASILOMAR, November 2015.

M.Ji, K. Shanmugam, G. Vettigli, J, Llorca, A. M. Tulino, “An Efficient Multiple-Groupcast Coded Multicasting Scheme for Finite
Fractional Caching”, 2015 IEEE International Conference on Communications (ICC2015), London, 2015.

G. Vettigli, M. Ji, A. M. Tulino, J, Llorca, P. Festa, “An Efficient Coded Multicasting Scheme Preserving the Multiplicative Caching
Gain” IEEE Infocom, 2015, Hong Kong, 2015.

M. Ji, M. Wing, A. M. Tulino, J. Llorca, G. Caire, M. Effros, M. Langberg, "On the Fundamental Limits of Caching in Combination
Networks”, 16th IEEE International Workshop on Signal Processing Advances in Wireless Communications, SPAWC 2015, Stockholm,
Sweden, 2015



REFERENCES - CONTENT DISTRIBUTION

27. M. Ji, A. M. Tulino, J. Llorca, G. Caire, “Caching and coded multicasting: multiple requests with random demands”, IEEE Information
Theory Workshop, Israel, 2015.

28. P. Hassanzadeh, E. Erkip, J. Llorca, A. Tulino, “Distortion Memory Tradeoffs in Cache-Aided Wireless Video Delivery”, IEEE
ALLERTON, 2015.

29. M. Ji, A. Tulino, J. Llorca, G. Caire, “Caching and Coded Multicasting: Multiple Groupcast Index Coding”, GlobalSIP 2014, Atlanta,
Georgia, 2014.

30. M. Ji, A. Tulino, J. Llorca, G. Caire, "On the Average Performance of Caching and Coded Multicasting with Random Demands”,
SWCS 2014, Barcelona, Spain, 2014.

31. K. Shanmugam, M. Ji, A. Tulino, J. Llorca, A. Dimakis. “Finite Length Analysis of Caching-Aided Coded Multicasting,” IEEE Allerton
Conference, 2014.

32. . Llorca, A. M. Tulino, “Minimum cost caching-aided multicast under arbitrary demand” Conference on Signals, Systems and
Computers, Asilomar, 2013.

33. J. Llorca, A. M. Tulino, K. Guan, J. Esteban, M. Varvello, N. Choiy, D. Kilper, "Dynamic In-Network Caching for Energy Efficient
Content Delivery”, INFOCOM 2013.

34. J. Llorca, A. Tulino, K. Guan, D. C. Kilper, "Network-coded caching-aided multicast for efficient content delivery”, IEEE ICC 2013,
Budapest, Hungary, 2013.



REFERENCES - REAL-TIME COMPUTATION

0 ®

10.

11.

12.

13.

C.H. Wang, J. Llorca, A. Tulino, T. Javidi, Dynamic Cloud Network Control Under Reconfiguration Delay and Cost”, IEEE
Transactions on Networking, Januray 2019

K. Poularakis, J. Llorca, A. Tulino, L. Tassiulas, "Joint Service Placement and Request Routing in Multi-Cell Mobile Edge
Computing Networks," IEEE INFOCOM, April 2019.

M. Michael, J. Llorca, A. Tulino, "Approximation Algorithms for the Optimal Distribution of Real-Time Stream-Processing
Services," IEEE ICC, May 2019.

H. Feng, J. Llorca, A. Tulino, A. Molisch, "Optimal Control of Wireless Computing Networks,” IEEE Transactions on Wireless
Communications, October 2018.

J. Zhang, A. Sinha, J. Llorca, A. Tulino, E. Modiano, "Optimal Control of Distributed Computing Networks with Mixed-Cast
Traffic Flows," IEEE INFOCOM, April 2018.

H. Feng, J. Llorca, A. Tulino, A. Molisch, "Optimal Dynamic Cloud Network Control”,  IEEE/ACM Transactions on
Networking, September 2018.

L. Jiao, A. Tulino, J. Llorca, Y. Yin, A. Sala, "Smoothed Online Resource Allocation in Multi-Tier Distributed Cloud
Networks," IEEE Transactions on Networking, June 2017.

H. Feng, J. Llorca, A. M. Tulino, “Impact of channel state information on wireless computing network control” ASILOMAR, 2017.
H. Feng, J. Llorca, A. M. Tulino, A. Molish, “On the Delivery of Augmented Information Services over Wireless Computing
Networks” IEEE International Conference on Communications (ICC2017), 2017.

H. Feng, J. Llorca, A. Tulino, D. Raz, A. Molish, “Approximation Algorithms for the NFV Service Distribution Problem” IEEE
INFOCOM, 2017.

M. Barcelo, A. Correa, J. Llorca, A. M Tulino, J.L. Vicario, A. Morell, “IoT-Cloud Service Optimization in Next Generation Smart
Environments”, IEEE Journal on Selected Areas in Communications, Vol, 34, No. 12, pp. 4077-4090, 2016.

L. Jei, A. Tulino, J. Llorca, Y. Jin, A. Sala, "Smoothed Online Resource Allocation in Multi-Tier Distributed Cloud Networks”,
IEEE International Parallel & Distributed Processing Symposium (IPDPS), 2016.

H. Feng, J. Llorca, A. Tulino, A. Molish, “Optimal Dynamic Cloud Network Control”, IEEE International Conference on
Communications (ICC2016). 2016. (Best paper award).



REFERENCES - REAL-TIME COMPUTATION

14. H. Feng, J. Llorca, A. Tulino, A. Molish, "Dynamic Network Service Optimization in Distributed Cloud Networks”, IEEE INFOCOM
Workshops, 2016.

15. P. Marchetta, J. Llorca, A. Tulino, A. Pescape, "MC3: a Cloud Caching Strategy for Next Generation Virtual CDNs”, IEEE
Networking, 2016.

16. J. Llorca, A. M. Tulino, M. Varvello, J. Esteban, D. Perino, Member, “Energy Efficient Dynamic Content Distribution”, IEEE Journal
on Selected Areas in Communications, Vol. 33, No. 12, pp. 2826-2836, 2015.

17. M. Barcelo, J, Llorca, A. M. Tulino, N. Raman, “"The Cloud Service Distribution Problem in Distributed Cloud Networks”, 2015 IEEE
International Conference on Communications (ICC2015), London, 2015.

18. J, Llorca, C. Sterle, A. M. Tulino, A. Sforza. A. Esposito, “Joint Content-Resource Allocation in Software Defined Virtual CDNs”,
2015 IEEE International Conference on Communications (ICC2015), London, 2015.



