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• Real-time Computation
Efficient Service Configuration (Storage/Computation/Delivery)
• Network Slicing (NFV/SDN)
• Mobile Edge Computing (MEC)
• Real-time Stream processing 
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(5G & beyond) cloud-integrated networks will become universal general-purpose compute platforms, 
where a large variety of services and applications will be deployed in the form of slices within a common 
physical infrastructure taking advantage of the cloud network’s reach, elasticity, and flexibility. 
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• Ideal for next generation 
services
1) Network services

• 5G slices

Cloud Network Slice
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1) Network services

• 5G slices

2) Automation services
Smart X, IoT

3) Augmented experience services
Virtual X, Augmented X (e.g. reality/cognition)
Immersive video
Real-time computer vision/scene analysis

Cloud Network Slice
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• Opportunities
• Users can consume 

resource- and interaction-
intensive applications from 
resource-limited devices

• Operators can reduce costs 
and create new value-
added services

• Overall sustainability
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• Key enablers
- Network function virtualization (NFV)
- Software defined networking (SDN)
- Network Slicing
- Advance RAT (Turning space in bandwidth)

- Network densification, 

- Massive MIMO & mmW

- D2D communications 

- Cooperative information sharing (Turning Memory in bandwidth)

- Cooperative (edge) caching, 

- Network coding, 

- multicast transport

- Network Compression

Cloud Network Slice

Objectives
• Understand the fundamental efficiency limits of the future networked cloud
• Develop practical solutions that push the network closer to its limits



v NFV: move hardware appliances into software functions deployed 
at multiple cloud locations and elastically scaled computing 
resources. 

v SDN: program the network in between and steer network flows 
through the appropriate set of functions. 

v Network slicing: create  cloud network slices which are hence 
elastic and programmable. 

Elastically allocate both cloud (storage and computing) and network 
resources according to changing demands, in order to meet service 

requirements while minimizing the use of the physical 
infrastructure. 



• Network Densification

• Massive MIMO 

• Millimeter wave (mmW)

• D2D communications 
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• Key enablers
- Network function virtualization (NFV)
- Software defined networking (SDN)
- Network Slicing

- Advance RAT (Turning space in bandwidth)

- Cooperative information sharing (Turning Memory in bandwidth)



Communication

• Resource limited

• Interaction limited
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Communication Content Distribution 

• Resource limited

• Interaction limited

• Resource intensive

• Interaction limited

TOWARDS REAL-TIME AUGMENTED COGNITION
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Real-time Computation

• Resource intensive

• Real-time interaction

Bridging the time-scale gap between information capture/sensing, analysis/processing, and delivery/consumption
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• Content Distribution 
Efficient Content Storage and Delivery
• Cache-aided coded multicast 
• Distributed network compression  
• Dynamic Data
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The Wireless Bottleneck

Multicast 
medium

Unicast traffic



The Wireless Bottleneck

Asynchronous content reuse

Multicast 
medium

Unicast traffic

Wireless edge caching

Edge Caching



FemtoCaching: Caching at the infrastructure side (SBS, Helpers)
Approaches 

M: Memory at femtocaching

N: number of files

The Wireless Bottleneck

Rate ≈ Load ≈ Delay

Load =
average number of transmissions

File size 
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FemtoCaching: Caching at the infrastructure side (SBS, Helpers)
Approaches 

Requires infrastructure nodes to grow linearly with the users.

M: Memory at femtocaching

N: number of files

The Wireless Bottleneck

Rate ≈ Load ≈ Delay

Load =
average number of transmissions

File size 
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Approaches 

The Wireless Bottleneck

D2D Caching: content replication and multi-hop. 

M: Memory at user device

N: number of files
Rate ≈ Load ≈ Delay

Load =
average number of transmissions

File size 
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Approaches 

The Wireless Bottleneck

D2D Caching: content replication and multi-hop. 

Requires no infrastructure, but very hard to implement 
• no good D2D standard in place, 
• coordination across a large network

M: Memory at user device

N: number of files
Rate ≈ Load ≈ Delay

Load =
average number of transmissions

File size 
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Cache-Aided Coded Multicast (CCM): 

Question: 
Can we achieve scalability with finite infrastructure and 
no D2D communication?

Yes we can!

Main Idea:
• leverages side information at wireless edge caches to 

efficiently serve jointly multiple unicast demands via common 
multicast transmissions, 

• leads to load reductions that are proportional to the 
aggregate cache size. 

The Wireless Bottleneck
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Cache-Aided Coded Multicast 
Source
N files

Fractional Cooperative Caching (Cache Encoder)
• Split files into F packets and store them strategically

K users

Cache
M files
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Coded Multicast
• Coded multicast transmission simultaneously serve  

multiple distinct requests via index coding



Fractional Cooperative Caching (Cache Encoder)
• Split files into F packets and store them strategically

Coded Multicast
• Coded multicast transmission simultaneously serve  

multiple distinct requests via index coding

Cache-Aided Coded Multicast 
Source
N files

K users

Cache
M files
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Normalized user’s cache size

Think of as a constantµ =
M

N
=

cache size

num. of files
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Fractional Cooperative Caching (Cache Encoder)
• Split files into F packets and store them strategically

Coded Multicast
• Coded multicast transmission simultaneously serve  

multiple distinct requests via index coding

Cache-Aided Coded Multicast 
Source
N files

m/n Mm 

m
Load

In the relevant regime of KM ≫ N (i.e. Kµ≫ 1 )

≃ Θ(1/µ) ≃ O(1)K(1� µ)

1 +Kµ
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Fractional Cooperative Caching (Cache Encoder)
• Split files into F packets and store them strategically

Coded Multicast
• Coded multicast transmission simultaneously serve  

multiple distinct requests via index coding

Cache-Aided Coded Multicast 
Source
N files

m/n Mm 

m

(Index) Coding turns unicast traffic into 
multicast traffic 

Load

Index Coding 
with a twist

In the relevant regime of KM ≫ N (i.e. Kµ≫ 1 )

≃ Θ(1/µ) ≃ O(1)K(1� µ)

1 +Kµ
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Wants:X2

Has:

Minimum number of transmissions?

Source: Broadcasts to all users. 

Each transmission is 1 file.

Side information allows savings

⊕ X3 Graph Coloring solution
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X1

Wants:X2

Has:

Minimum number of transmissions?

Source: Broadcasts to all users. 

Each transmission is 1 file.

Side information allows savings

⊕ X3 Graph Coloring solutionIC is a fundamental and challenging problem 
(Birk & Kol’98; Bar-Yossef et al.; Alon et al.; El Rouayheb et al.; Effros et al.; Maleki et al.)
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At the beginning… 



• M. Maddah-Ali, and U. Niesen, TIT 2014]: order optimal under uncoded placement. 

• K. Wan, D. Tuninetti, P. Piantanida, ITW 2016]: optimality under distinct demands K ≤ N and uncoded
placement. 

• M. Ji, A. M. Tulino, J. Llorca, and G. Caire, TIT 2017]: order optimal for arbitrary popularity distribution  

• Q. Yu, M. A. Maddah-Ali, S. Avestimehr, TIT 2018]: optimal for uncoded placement. 

• Q. Yu, M. A. Maddah-Ali, S. Avestimehr, TIT 2019]: optimal within a factor of 2 (no restriction on 
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Over the years… 
Several optimality results



Gains of CCM unbounded for uniform distribution, M/m=1/10, n=1000 users, only 10 transmissions! 

BUT Still very far from achieving these gains because of two main technical barriers 
Normalized per user cache size

as a constantµ =
M

N
=

cache size

num. of files
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Load ≃

Over the years… 

• M. Maddah-Ali, and U. Niesen, TIT 2014]: order optimal under uncoded placement. 

• K. Wan, D. Tuninetti, P. Piantanida, ITW 2016]: optimality under distinct demands K ≤ N and uncoded
placement. 

• M. Ji, A. M. Tulino, J. Llorca, and G. Caire, TIT 2017]: order optimal for arbitrary popularity distribution  

• Q. Yu, M. A. Maddah-Ali, S. Avestimehr, TIT 2018]: optimal for uncoded placement. 

• Q. Yu, M. A. Maddah-Ali, S. Avestimehr, TIT 2019]: optimal within a factor of 2 (no restriction on 
placement). 

Several optimality results



• Heterogeneous Channels
– Different caches have different channels: worst cache channel 

dictates the overall performance 
– How to include channel coding in order to maintains the gains.

Technical Barriers 
Gains of CCM theoretical unbounded

BUT Still very far from achieving these gains because of two main technical barriers 

K(1� µ)

1 +Kµ
<latexit sha1_base64="P6eKnqJRp3h3dtbZfDmB1Pzj5/M=">AAACAnicbZDLSsNAFIYn9VbrLepK3AwWoSKWpAq6LLoRuqlgL9CEMplO2qEzSZiZCCUEN76KGxeKuPUp3Pk2TtostPWHgY//nMOZ83sRo1JZ1rdRWFpeWV0rrpc2Nre2d8zdvbYMY4FJC4csFF0PScJoQFqKKka6kSCIe4x0vPFNVu88ECFpGNyrSURcjoYB9SlGSlt988DxBcJJo2KfOTw+SRP7FDY0paW+Wbaq1lRwEewcyiBXs29+OYMQx5wECjMkZc+2IuUmSCiKGUlLTixJhPAYDUlPY4A4kW4yPSGFx9oZQD8U+gUKTt3fEwniUk64pzs5UiM5X8vM/2q9WPlXbkKDKFYkwLNFfsygCmGWBxxQQbBiEw0IC6r/CvEI6UyUTi0LwZ4/eRHatap9Xq3dXZTr13kcRXAIjkAF2OAS1MEtaIIWwOARPINX8GY8GS/Gu/Exay0Y+cw++CPj8wfwXpXY</latexit>

Load ≃
as a constantµ =

M

N
=

cache size

num. of files
<latexit sha1_base64="VOfmDEXe6WuspkvCpvKM+tIR4aQ=">AAACKHicbZDLSgMxFIYzXmu9VV26CRbBVZmpgm7Eohs3SgWrQqeUTHrGhuYyJBmxDvM4bnwVNyKKuPVJTOssvP0Q+PjPOZycP0o4M9b3372JyanpmdnSXHl+YXFpubKyemFUqim0qOJKX0XEAGcSWpZZDleJBiIiDpfR4GhUv7wBbZiS53aYQEeQa8liRol1VrdyEIp0P4w1odlJnp3mBYciUrcZJbQP2LA7yPPCkqmoYRXjmHEweV7uVqp+zR8L/4WggCoq1OxWnsOeoqkAaSknxrQDP7GdjGjLKIe8HKYGEkIH5BraDiURYDrZ+NAcbzqnh2Ol3ZMWj93vExkRxgxF5DoFsX3zuzYy/6u1UxvvdTImk9SCpF+L4pRjq/AoNdxjGqjlQweEaub+immfuKSsy3YUQvD75L9wUa8F27X62U61cVjEUULraANtoQDtogY6Rk3UQhTdo0f0gl69B+/Je/Pev1onvGJmDf2Q9/EJK+yn2w==</latexit>

Think of

• Coding Complexity 
– Number of packets grows exponentially with number of 

caches.
– How should F scale as a function of M,m,n to get these gains?



– How should F scale as a function of M,K,N to get these gains?

max
KP

k= 1
log R̄kmax

KP

k= 1 max
KX

k= 1

max
KP

k= 1
log R̄k

KP

k= 1

1 File/trans.

Take a file from
the library

Split into F packets and
place strategically +
XOR packets during delivery. 

Library – N Files

Technical Barriers 
• Coding Complexity 

Key Question: How large F needs to be ? 

as a constantµ =
M

N
=

cache size

num. of files
<latexit sha1_base64="VOfmDEXe6WuspkvCpvKM+tIR4aQ=">AAACKHicbZDLSgMxFIYzXmu9VV26CRbBVZmpgm7Eohs3SgWrQqeUTHrGhuYyJBmxDvM4bnwVNyKKuPVJTOssvP0Q+PjPOZycP0o4M9b3372JyanpmdnSXHl+YXFpubKyemFUqim0qOJKX0XEAGcSWpZZDleJBiIiDpfR4GhUv7wBbZiS53aYQEeQa8liRol1VrdyEIp0P4w1odlJnp3mBYciUrcZJbQP2LA7yPPCkqmoYRXjmHEweV7uVqp+zR8L/4WggCoq1OxWnsOeoqkAaSknxrQDP7GdjGjLKIe8HKYGEkIH5BraDiURYDrZ+NAcbzqnh2Ol3ZMWj93vExkRxgxF5DoFsX3zuzYy/6u1UxvvdTImk9SCpF+L4pRjq/AoNdxjGqjlQweEaub+immfuKSsy3YUQvD75L9wUa8F27X62U61cVjEUULraANtoQDtogY6Rk3UQhTdo0f0gl69B+/Je/Pev1onvGJmDf2Q9/EJK+yn2w==</latexit>

Think of

F = exp (Kf(µ)) = exp (⇥(K))
<latexit sha1_base64="nmgKNbhCGofN/61/p0tNNiCNY48=">AAACIHicbVDLSgNBEJz1GeNr1aOXwSAkl7CrQrwIoiBCLhESDWRDmJ30JoOzD2Z6xRD8FC/+ihcPiuhNv8ZJsodoLGgoqrrp7vITKTQ6zpc1N7+wuLScW8mvrq1vbNpb29c6ThWHBo9lrJo+0yBFBA0UKKGZKGChL+HGvz0f+Td3oLSIozoOEmiHrBeJQHCGRurYlYsTD+4TT0KAxSoNil6YlqinRK+PpSnLq/cBWbFayqyOXXDKzhh0lrgZKZAMtY796XVjnoYQIZdM65brJNgeMoWCS3jIe6mGhPFb1oOWoRELQbeH4wcf6L5RujSIlakI6VidnhiyUOtB6JvOkGFf//VG4n9eK8XguD0UUZIiRHyyKEglxZiO0qJdoYCjHBjCuBLmVsr7TDGOJtO8CcH9+/IsuT4ou4flg6ujwulZFkeO7JI9UiQuqZBTcklqpEE4eSTP5JW8WU/Wi/VufUxa56xsZof8gvX9A4giofk=</latexit>

U1 U2 UK 

as a constantµ =
M

N
=

cache size

num. of files
<latexit sha1_base64="VOfmDEXe6WuspkvCpvKM+tIR4aQ=">AAACKHicbZDLSgMxFIYzXmu9VV26CRbBVZmpgm7Eohs3SgWrQqeUTHrGhuYyJBmxDvM4bnwVNyKKuPVJTOssvP0Q+PjPOZycP0o4M9b3372JyanpmdnSXHl+YXFpubKyemFUqim0qOJKX0XEAGcSWpZZDleJBiIiDpfR4GhUv7wBbZiS53aYQEeQa8liRol1VrdyEIp0P4w1odlJnp3mBYciUrcZJbQP2LA7yPPCkqmoYRXjmHEweV7uVqp+zR8L/4WggCoq1OxWnsOeoqkAaSknxrQDP7GdjGjLKIe8HKYGEkIH5BraDiURYDrZ+NAcbzqnh2Ol3ZMWj93vExkRxgxF5DoFsX3zuzYy/6u1UxvvdTImk9SCpF+L4pRjq/AoNdxjGqjlQweEaub+immfuKSsy3YUQvD75L9wUa8F27X62U61cVjEUULraANtoQDtogY6Rk3UQhTdo0f0gl69B+/Je/Pev1onvGJmDf2Q9/EJK+yn2w==</latexit>

Think of

all original schemes number of packets grows exponentially 
with number of caches



Distributed

Centralized

Le
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F = exp (Kf(µ)) = exp (⇥(K))
<latexit sha1_base64="nmgKNbhCGofN/61/p0tNNiCNY48=">AAACIHicbVDLSgNBEJz1GeNr1aOXwSAkl7CrQrwIoiBCLhESDWRDmJ30JoOzD2Z6xRD8FC/+ihcPiuhNv8ZJsodoLGgoqrrp7vITKTQ6zpc1N7+wuLScW8mvrq1vbNpb29c6ThWHBo9lrJo+0yBFBA0UKKGZKGChL+HGvz0f+Td3oLSIozoOEmiHrBeJQHCGRurYlYsTD+4TT0KAxSoNil6YlqinRK+PpSnLq/cBWbFayqyOXXDKzhh0lrgZKZAMtY796XVjnoYQIZdM65brJNgeMoWCS3jIe6mGhPFb1oOWoRELQbeH4wcf6L5RujSIlakI6VidnhiyUOtB6JvOkGFf//VG4n9eK8XguD0UUZIiRHyyKEglxZiO0qJdoYCjHBjCuBLmVsr7TDGOJtO8CcH9+/IsuT4ou4flg6ujwulZFkeO7JI9UiQuqZBTcklqpEE4eSTP5JW8WU/Wi/VufUxa56xsZof8gvX9A4giofk=</latexit>

Load = O

✓
K

Kµ

◆
= O(1)

<latexit sha1_base64="O2OiX+NCK0tG9YqHx+NiXLY54Ok=">AAACDXicbVC7SgNBFJ31GeMramkzGIWkCbtR0CYQtBFSJIJ5QHYJs5PZZMjsg5m7Qlj2B2z8FRsLRWzt7fwbJ49CEw9cOJxzL/fe40aCKzDNb2NldW19YzOzld3e2d3bzx0ctlQYS8qaNBSh7LhEMcED1gQOgnUiyYjvCtZ2RzcTv/3ApOJhcA/jiDk+GQTc45SAlnq50wqu24J5ULA9SWhSS5Matv04tSUfDKFYqResYi+XN0vmFHiZWHOSR3M0erkvux/S2GcBUEGU6lpmBE5CJHAqWJq1Y8UiQkdkwLqaBsRnykmm36T4TCt97IVSVwB4qv6eSIiv1Nh3dadPYKgWvYn4n9eNwbtyEh5EMbCAzhZ5scAQ4kk0uM8loyDGmhAqub4V0yHRqYAOMKtDsBZfXiatcsk6L5XvLvLV63kcGXSMTlABWegSVdEtaqAmougRPaNX9GY8GS/Gu/Exa10x5jNH6A+Mzx9pv5p/</latexit>

Load

F = exp (Kf(µ)) = exp (⇥(K))
<latexit sha1_base64="nmgKNbhCGofN/61/p0tNNiCNY48=">AAACIHicbVDLSgNBEJz1GeNr1aOXwSAkl7CrQrwIoiBCLhESDWRDmJ30JoOzD2Z6xRD8FC/+ihcPiuhNv8ZJsodoLGgoqrrp7vITKTQ6zpc1N7+wuLScW8mvrq1vbNpb29c6ThWHBo9lrJo+0yBFBA0UKKGZKGChL+HGvz0f+Td3oLSIozoOEmiHrBeJQHCGRurYlYsTD+4TT0KAxSoNil6YlqinRK+PpSnLq/cBWbFayqyOXXDKzhh0lrgZKZAMtY796XVjnoYQIZdM65brJNgeMoWCS3jIe6mGhPFb1oOWoRELQbeH4wcf6L5RujSIlakI6VidnhiyUOtB6JvOkGFf//VG4n9eK8XguD0UUZIiRHyyKEglxZiO0qJdoYCjHBjCuBLmVsr7TDGOJtO8CcH9+/IsuT4ou4flg6ujwulZFkeO7JI9UiQuqZBTcklqpEE4eSTP5JW8WU/Wi/VufUxa56xsZof8gvX9A4giofk=</latexit>

F = exp (gf 0(µ)) = O(µg)
<latexit sha1_base64="HE5kTy0Z3Pe8fGtCrGB8s+wycb0=">AAACEHicbVBNS8NAEN34bf2qevSyWKTtpSQq6EUoCuJNBWuFJpbNdpIu3XywOxFL6E/w4l/x4kERrx69+W9Mag/a+mDg7Xsz7MxzYyk0muaXMTU9Mzs3v7BYWFpeWV0rrm9c6yhRHBo8kpG6cZkGKUJooEAJN7ECFrgSmm7vJPebd6C0iMIr7MfgBMwPhSc4w0xqF8unRzbcx7YEDys+9coVO0iq1FbC72L16Dx/3vrVQrtYMmvmEHSSWCNSIiNctIufdifiSQAhcsm0bllmjE7KFAouYVCwEw0x4z3mQyujIQtAO+nwoAHdyZQO9SKVVYh0qP6eSFmgdT9ws86AYVePe7n4n9dK0Dt0UhHGCULIfz7yEkkxonk6tCMUcJT9jDCuRLYr5V2mGMcswzwEa/zkSXK9W7P2aruX+6X68SiOBbJFtkmFWOSA1MkZuSANwskDeSIv5NV4NJ6NN+P9p3XKGM1skj8wPr4BWhia4A==</latexit>

= O

✓
K

g

◆

<latexit sha1_base64="my9F1VSPrZfi5lum073ibAa4G8g=">AAACBHicbVDLSsNAFJ34rPUVddnNYBHqpiRV0I1QdCO4sIJ9QBPKZDpJh04ezNwIJXThxl9x40IRt36EO//GaZuFth64cDjnXu69x0sEV2BZ38bS8srq2npho7i5tb2za+7tt1ScSsqaNBax7HhEMcEj1gQOgnUSyUjoCdb2hlcTv/3ApOJxdA+jhLkhCSLuc0pASz2zdIFvHcF8qDi+JDS7GWfB2JE8GMBxzyxbVWsKvEjsnJRRjkbP/HL6MU1DFgEVRKmubSXgZkQCp4KNi06qWELokASsq2lEQqbcbPrEGB9ppY/9WOqKAE/V3xMZCZUahZ7uDAkM1Lw3Ef/zuin4527GoyQFFtHZIj8VGGI8SQT3uWQUxEgTQiXXt2I6IDoM0LkVdQj2/MuLpFWr2ifV2t1puX6Zx1FAJXSIKshGZ6iOrlEDNRFFj+gZvaI348l4Md6Nj1nrkpHPHKA/MD5/ADbUl9U=</latexit>

F = exp (Kf 00 (µ)) = exp (⇥(K))
<latexit sha1_base64="eEDh2l6hyVxNo3OVJ87av/eGgsw="></latexit> Load= O

✓
K

Kµ

◆
= O(1)

<latexit sha1_base64="O2OiX+NCK0tG9YqHx+NiXLY54Ok=">AAACDXicbVC7SgNBFJ31GeMramkzGIWkCbtR0CYQtBFSJIJ5QHYJs5PZZMjsg5m7Qlj2B2z8FRsLRWzt7fwbJ49CEw9cOJxzL/fe40aCKzDNb2NldW19YzOzld3e2d3bzx0ctlQYS8qaNBSh7LhEMcED1gQOgnUiyYjvCtZ2RzcTv/3ApOJhcA/jiDk+GQTc45SAlnq50wqu24J5ULA9SWhSS5Matv04tSUfDKFYqResYi+XN0vmFHiZWHOSR3M0erkvux/S2GcBUEGU6lpmBE5CJHAqWJq1Y8UiQkdkwLqaBsRnykmm36T4TCt97IVSVwB4qv6eSIiv1Nh3dadPYKgWvYn4n9eNwbtyEh5EMbCAzhZ5scAQ4kk0uM8loyDGmhAqub4V0yHRqYAOMKtDsBZfXiatcsk6L5XvLvLV63kcGXSMTlABWegSVdEtaqAmougRPaNX9GY8GS/Gu/Exa10x5jNH6A+Mzx9pv5p/</latexit>

[Tang-Ramamoorthy ‘17, Yan et al ‘16]

Very practical schemes    Exponentially smaller !!

F = exp
⇣p

Kf 00 (µ)
⌘
= exp

⇣
⇥(

p
K)

⌘

<latexit sha1_base64="o72WHeznmb3Piwxv+4XtzYUU24o=">AAACQXicbVBJSwMxFM64W7eqRy/BItZLmVFBL4IoiOBFoRt0Ssmkb9pgZjF5I5ahf82L/8Cbdy8eFPHqxbQdxe1ByMe38JLPi6XQaNsP1tj4xOTU9Mxsbm5+YXEpv7xS1VGiOFR4JCNV95gGKUKooEAJ9VgBCzwJNe/yeKDXrkFpEYVl7MXQDFgnFL7gDA3VytdPDly4iVNXgo9F6uorhelZ39/cpJ9UkFBXiU4Xt7Kr/z3ilruArPgZ/PK08gW7ZA+H/gVOBgokm/NW/t5tRzwJIEQumdYNx46xmTKFgkvo59xEQ8z4JetAw8CQBaCb6bCBPt0wTJv6kTInRDpkvydSFmjdCzzjDBh29W9tQP6nNRL095upCOMEIeSjRX4iKUZ0UCdtCwUcZc8AxpUwb6W8yxTjaErPmRKc31/+C6rbJWentH2xWzg8yuqYIWtknRSJQ/bIITkl56RCOLklj+SZvFh31pP1ar2NrGNWllklP8Z6/wDWbbB+</latexit>

[Yan et al ‘16, Shangguan et al ‘16]

Load = O(1) , then F = K is impossible !!     

All these results are about constructions of RUZSA-SZEMÉREDI bipartite graphs

Caching gain = K

Caching gain = gCaching gain = K

[Hachem et al ‘17], [Lampiris et al ‘18], [Parrinello et al ‘18] 

[Shanmugam, Tulino, Dimakis 2017]F = K,µ � K��(✏)
<latexit sha1_base64="1l3tWOTCHYiyRsKPrzciN8oUgpI=">AAACCnicbVDLSgNBEJyNrxhfUY9eRoMQQcNuFPQiBAURcolgHpCNYXbSSYbMzq4zs0JYcvbir3jxoIhXv8Cbf+PkcdDEgoaiqpvuLi/kTGnb/rYSc/MLi0vJ5dTK6tr6Rnpzq6KCSFIo04AHsuYRBZwJKGumOdRCCcT3OFS93uXQrz6AVCwQt7ofQsMnHcHajBJtpGZ69+q8eOj6kduBe1y8i4/cFnBNsi6EivFAHAya6Yyds0fAs8SZkAyaoNRMf7mtgEY+CE05Uaru2KFuxERqRjkMUm6kICS0RzpQN1QQH1QjHr0ywPtGaeF2IE0JjUfq74mY+Er1fc90+kR31bQ3FP/z6pFunzViJsJIg6DjRe2IYx3gYS64xSRQzfuGECqZuRXTLpGEapNeyoTgTL88Syr5nHOcy9+cZAoXkziSaAftoSxy0CkqoGtUQmVE0SN6Rq/ozXqyXqx362PcmrAmM9voD6zPH+JRmcU=</latexit>

Load  K✏
<latexit sha1_base64="OoSWH3wGobN+ehLnalnS1EZ2udM=">AAAB+XicbVBNS8NAEN34WetX1KOXxSJ4KkkV9Fj0InipYD+giWWznbRLN5u4uymU0H/ixYMiXv0n3vw3btoctPXBwOO9GWbmBQlnSjvOt7Wyura+sVnaKm/v7O7t2weHLRWnkkKTxjyWnYAo4ExAUzPNoZNIIFHAoR2MbnK/PQapWCwe9CQBPyIDwUJGiTZSz7Y9Dk/47tGDRDEei3LPrjhVZwa8TNyCVFCBRs/+8voxTSMQmnKiVNd1Eu1nRGpGOUzLXqogIXREBtA1VJAIlJ/NLp/iU6P0cRhLU0Ljmfp7IiORUpMoMJ0R0UO16OXif1431eGVnzGRpBoEnS8KU451jPMYcJ9JoJpPDCFUMnMrpkMiCdUmrDwEd/HlZdKqVd3zau3+olK/LuIooWN0gs6Qiy5RHd2iBmoiisboGb2iNyuzXqx362PeumIVM0foD6zPH8H1kxY=</latexit>

[Shanmugam, Ji, Tulino, Llorca Dimakis 2016] users are grouped

PHY: leveraging spatial multiplexing 

Coding Complexity

F = exp (gf 0(µ))
<latexit sha1_base64="b769Yfw6QQXN4Ck7b/EL/Gn6cVg=">AAACB3icbVDLSgNBEJz1GeMr6lGQwSAml7AbBb0IQUE8RjAPyC5hdtKbDJl9MNMrhpCbF3/FiwdFvPoL3vwbN8keNLGgoajqprvLjaTQaJrfxsLi0vLKamYtu76xubWd29mt6zBWHGo8lKFqukyDFAHUUKCEZqSA+a6Ehtu/GvuNe1BahMEdDiJwfNYNhCc4w0Rq5w6uL2x4iGwJHha61Dsu2H5cpLYS3R4Ws+1c3iyZE9B5YqUkT1JU27kvuxPy2IcAuWRatywzQmfIFAouYZS1Yw0R433WhVZCA+aDdoaTP0b0KFE61AtVUgHSifp7Ysh8rQe+m3T6DHt61huL/3mtGL1zZyiCKEYI+HSRF0uKIR2HQjtCAUc5SAjjSiS3Ut5jinFMohuHYM2+PE/q5ZJ1UirfnuYrl2kcGbJPDkmBWOSMVMgNqZIa4eSRPJNX8mY8GS/Gu/ExbV0w0pk98gfG5w9JJZem</latexit> [Jin, Cui, Liu, and Caire. TC, 2019] 

Caching gain = K1-e

[all schemes up to 2016]

as a constantµ =
M

N
=

cache size

num. of files
<latexit sha1_base64="VOfmDEXe6WuspkvCpvKM+tIR4aQ=">AAACKHicbZDLSgMxFIYzXmu9VV26CRbBVZmpgm7Eohs3SgWrQqeUTHrGhuYyJBmxDvM4bnwVNyKKuPVJTOssvP0Q+PjPOZycP0o4M9b3372JyanpmdnSXHl+YXFpubKyemFUqim0qOJKX0XEAGcSWpZZDleJBiIiDpfR4GhUv7wBbZiS53aYQEeQa8liRol1VrdyEIp0P4w1odlJnp3mBYciUrcZJbQP2LA7yPPCkqmoYRXjmHEweV7uVqp+zR8L/4WggCoq1OxWnsOeoqkAaSknxrQDP7GdjGjLKIe8HKYGEkIH5BraDiURYDrZ+NAcbzqnh2Ol3ZMWj93vExkRxgxF5DoFsX3zuzYy/6u1UxvvdTImk9SCpF+L4pRjq/AoNdxjGqjlQweEaub+immfuKSsy3YUQvD75L9wUa8F27X62U61cVjEUULraANtoQDtogY6Rk3UQhTdo0f0gl69B+/Je/Pev1onvGJmDf2Q9/EJK+yn2w==</latexit>

Think of



Technical Barriers 

• Heterogeneous Channels
– Different caches have different channels: worst cache channel 

dictates the overall performance 
– How to include channel coding in order to maintains the gains.

• Coding Complexity 
– Number of packets grows exponentially with number of 

caches.
– How should F scale as a function of M,m,n to get these gains?

Gains of CCM theoretical unbounded

BUT Still very far from achieving these gains because of two main technical barriers 

K(1� µ)

1 +Kµ
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dom vector (packet based) caching placement and coded
multicast scheme proposed in [?] to the case of multiple
requests according to a demand distribution, where multiple
means that each user makes L � 1 requests. The performance
metric is the average number of equivalent file transmissions.
We show that the proposed scheme is order-optimal under a
Zipf demand distribution with parameter ↵ in [0, 1). Second,
by recognizing the effect of L in the system, we introduce a
random scalar caching placement scheme, i.e., caching entire
files according to a probability distribution, and show that
when M and L is sufficiently large, the order optimality of
the shared link caching network can also be guaranteed.

II. NETWORK MODEL

We consider a network with a single source node (server)
connected to n user nodes U = {1, · · · , n} (caches) through
a shared multicast link. The source has access to the whole
content library F = {1, · · · , m} containing m files of equal
size F bits. Each user node has a cache of size M files (i.e.,
MF bits). The shared link is a deterministic channel that
transmits one file per unit time, such that all the users can
decode the same multicast codeword.

n
Wf 2 FF

2 : f 2 F

o

At each time unit (slot), each user requests a set of L
files in F . Each request is placed independently according
to a probability distribution q = (q1, . . . , qm), referred to as
the demand distribution. This is known a priori and, without
loss of generality up to index reordering, has non-increasing
components q1 � · · · � qm. Such requests form a random
matrix F of size L⇥n with columns fu = [fu,1, fu,2, · · · , fu,L]
corresponding to the requests of each user u 2 U . The
realization of F is denoted as F = [f1, f2, · · · , fn], where
fu = (fu,1, fu,2 . . . , fu,L)T. The caching problem includes
two distinct operations: the caching phase and the delivery
phase. The caching phase (cache configuration) is done a
priori, as a function of the files in the library, but does not
depend on the request matrix realization F. Then, during the
delivery phase, at each time slot, given the current request
matrix realization F, the source forms a multicast codeword
and transmits it over the shared link such that all users can
decode their requested files. Formally, we have:

Definition 1: (Caching Phase) The caching phase is a
mappin of the file library F onto the user caches. Without
loss of generality, we represent files as vectors over the binary
field F2. For each u 2 U , let �u : FmF

2 ! FMF
2 denote the

caching function of user u. Then, the cache content of user u
is given by Zu , �u(Wf : f = 1, · · · , m), where Wf 2 FF

2

denotes the f -th file in the library. ⌃
Definition 2: (Delivery Phase) At each use of the network,

a realization of the random request matrix F 2 F
L⇥n is

generated. The multicast encoder is defined by a fixed-to-
variable encoding function X : FmF

2 ⇥ F
L⇥n

! F⇤

2 (where
F⇤

2 denotes the set of finite length binary sequences), such
that X({Wf : f 2 F},F, Zu) is the transmitted codeword.

We denote by J({Wf : f 2 F},F) the length function
(in binary symbols) associated to the encoding function X .
Each user receives X({Wf : f 2 F},F) through the
noiseless shared link, and decodes its requested file Wfu,l ,
l = 1, · · · , L, as (cWfu,1 ,cWfu,2 , · · · ,cWfu,L) = �u(X, Zu,F),
where �u : F⇤

2 ⇥FMF
2 ⇥ F

L⇥n
! FLF

2 denotes the decoding
function of user u. The concatenation of 1) demand vector
generation, 2) multicast encoding and transmission over the
shared link, and 3) decoding, is referred to as the delivery
phase. ⌃

We refer to the overall content distribution scheme, formed
by both caching and delivery phases, directly as a caching
scheme, and measure the system performance in terms of the
rate during the delivery phase. In particular, we define the rate
of the scheme as

R(F ) = sup
{Wf :f2F}

E[J({Wf : f 2 F},F)]

F
, (1)

where the expectation is with respect to the random request
vector.1

Consider a sequence of caching schemes defined by cache
encoding functions {Zu}, multicast coding function X , and
decoding functions {�u}, for increasing file size F =
1, 2, 3, . . .. For each F , the worst-case (over the file library)
probability of error of the corresponding caching scheme is
defined as

P (F )
e ({Zu}, X, {�u}) =

sup
{Wf :f2F}

P
 
[

u2U

n
�u(X,Zu,F)

6= (Wfu,1 , · · · , Wfu,L)
o⌘

. (2)

A sequence of caching schemes is called admissible if
limF!1 P (F )

e ({Zu}, X, {�u}) = 0. Achievability for our
system is defined as follows:

Definition 3: A rate R(n, m, M, L,q) is achievable for the
shared link caching network with n users, library size m, cache
capacity M , number of requests L, and demand distribution
q, if there exists a sequence of admissible caching schemes
with rate R(F ) such that

lim sup
F!1

R(F )
 R(n, m, M, L,q). (3)

⌃
We let R⇤(n, m, M,q) denote the infimum (over all caching

schemes) of the achievable rates. The notion of “order-
optimality” for our system is defined as follows:

Definition 4: Let n, M, L be functions of m, such that
limm!1 n(m) = 1. A sequence of caching schemes for the
shared link caching network with n users, library size m, cache
capacity M , number of requests L, and demand distribution
q, is order-optimal if its rate R(n, m, M, L,q) satisfies

lim sup
m!1

R(n, m, M, L,q)

R⇤(n, m, M, L,q)
 ⌫, (4)

1Throughout this paper, we directly use “rate” to refer to the average rate
defined by (1) and explicitly use “average (expected) rate” if needed for clarity.S 
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dom vector (packet based) caching placement and coded
multicast scheme proposed in [?] to the case of multiple
requests according to a demand distribution, where multiple
means that each user makes L � 1 requests. The performance
metric is the average number of equivalent file transmissions.
We show that the proposed scheme is order-optimal under a
Zipf demand distribution with parameter ↵ in [0, 1). Second,
by recognizing the effect of L in the system, we introduce a
random scalar caching placement scheme, i.e., caching entire
files according to a probability distribution, and show that
when M and L is sufficiently large, the order optimality of
the shared link caching network can also be guaranteed.

II. NETWORK MODEL

We consider a network with a single source node (server)
connected to n user nodes U = {1, · · · , n} (caches) through
a shared multicast link. The source has access to the whole
content library F = {1, · · · , m} containing m files of equal
size F bits. Each user node has a cache of size M files (i.e.,
MF bits). The shared link is a deterministic channel that
transmits one file per unit time, such that all the users can
decode the same multicast codeword.
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At each time unit (slot), each user requests a set of L
files in F . Each request is placed independently according
to a probability distribution q = (q1, . . . , qm), referred to as
the demand distribution. This is known a priori and, without
loss of generality up to index reordering, has non-increasing
components q1 � · · · � qm. Such requests form a random
matrix F of size L⇥n with columns fu = [fu,1, fu,2, · · · , fu,L]
corresponding to the requests of each user u 2 U . The
realization of F is denoted as F = [f1, f2, · · · , fn], where
fu = (fu,1, fu,2 . . . , fu,L)T. The caching problem includes
two distinct operations: the caching phase and the delivery
phase. The caching phase (cache configuration) is done a
priori, as a function of the files in the library, but does not
depend on the request matrix realization F. Then, during the
delivery phase, at each time slot, given the current request
matrix realization F, the source forms a multicast codeword
and transmits it over the shared link such that all users can
decode their requested files. Formally, we have:

Definition 1: (Caching Phase) The caching phase is a
mappin of the file library F onto the user caches. Without
loss of generality, we represent files as vectors over the binary
field F2. For each u 2 U , let �u : FmF

2 ! FMF
2 denote the

caching function of user u. Then, the cache content of user u
is given by Zu , �u(Wf : f = 1, · · · , m), where Wf 2 FF

2

denotes the f -th file in the library. ⌃
Definition 2: (Delivery Phase) At each use of the network,

a realization of the random request matrix F 2 F
L⇥n is

generated. The multicast encoder is defined by a fixed-to-
variable encoding function X : FmF

2 ⇥ F
L⇥n

! F⇤

2 (where
F⇤

2 denotes the set of finite length binary sequences), such
that X({Wf : f 2 F},F, Zu) is the transmitted codeword.

We denote by J({Wf : f 2 F},F) the length function
(in binary symbols) associated to the encoding function X .
Each user receives X({Wf : f 2 F},F) through the
noiseless shared link, and decodes its requested file Wfu,l ,
l = 1, · · · , L, as (cWfu,1 ,cWfu,2 , · · · ,cWfu,L) = �u(X, Zu,F),
where �u : F⇤

2 ⇥FMF
2 ⇥ F

L⇥n
! FLF

2 denotes the decoding
function of user u. The concatenation of 1) demand vector
generation, 2) multicast encoding and transmission over the
shared link, and 3) decoding, is referred to as the delivery
phase. ⌃

We refer to the overall content distribution scheme, formed
by both caching and delivery phases, directly as a caching
scheme, and measure the system performance in terms of the
rate during the delivery phase. In particular, we define the rate
of the scheme as

R(F ) = sup
{Wf :f2F}

E[J({Wf : f 2 F},F)]

F
, (1)

where the expectation is with respect to the random request
vector.1

Consider a sequence of caching schemes defined by cache
encoding functions {Zu}, multicast coding function X , and
decoding functions {�u}, for increasing file size F =
1, 2, 3, . . .. For each F , the worst-case (over the file library)
probability of error of the corresponding caching scheme is
defined as

P (F )
e ({Zu}, X, {�u}) =

sup
{Wf :f2F}

P
 
[

u2U

n
�u(X,Zu,F)

6= (Wfu,1 , · · · , Wfu,L)
o⌘

. (2)

A sequence of caching schemes is called admissible if
limF!1 P (F )

e ({Zu}, X, {�u}) = 0. Achievability for our
system is defined as follows:

Definition 3: A rate R(n, m, M, L,q) is achievable for the
shared link caching network with n users, library size m, cache
capacity M , number of requests L, and demand distribution
q, if there exists a sequence of admissible caching schemes
with rate R(F ) such that

lim sup
F!1

R(F )
 R(n, m, M, L,q). (3)

⌃
We let R⇤(n, m, M,q) denote the infimum (over all caching

schemes) of the achievable rates. The notion of “order-
optimality” for our system is defined as follows:

Definition 4: Let n, M, L be functions of m, such that
limm!1 n(m) = 1. A sequence of caching schemes for the
shared link caching network with n users, library size m, cache
capacity M , number of requests L, and demand distribution
q, is order-optimal if its rate R(n, m, M, L,q) satisfies

lim sup
m!1

R(n, m, M, L,q)

R⇤(n, m, M, L,q)
 ⌫, (4)

1Throughout this paper, we directly use “rate” to refer to the average rate
defined by (1) and explicitly use “average (expected) rate” if needed for clarity.S 
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dom vector (packet based) caching placement and coded
multicast scheme proposed in [?] to the case of multiple
requests according to a demand distribution, where multiple
means that each user makes L � 1 requests. The performance
metric is the average number of equivalent file transmissions.
We show that the proposed scheme is order-optimal under a
Zipf demand distribution with parameter ↵ in [0, 1). Second,
by recognizing the effect of L in the system, we introduce a
random scalar caching placement scheme, i.e., caching entire
files according to a probability distribution, and show that
when M and L is sufficiently large, the order optimality of
the shared link caching network can also be guaranteed.

II. NETWORK MODEL

We consider a network with a single source node (server)
connected to n user nodes U = {1, · · · , n} (caches) through
a shared multicast link. The source has access to the whole
content library F = {1, · · · , m} containing m files of equal
size F bits. Each user node has a cache of size M files (i.e.,
MF bits). The shared link is a deterministic channel that
transmits one file per unit time, such that all the users can
decode the same multicast codeword.
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At each time unit (slot), each user requests a set of L
files in F . Each request is placed independently according
to a probability distribution q = (q1, . . . , qm), referred to as
the demand distribution. This is known a priori and, without
loss of generality up to index reordering, has non-increasing
components q1 � · · · � qm. Such requests form a random
matrix F of size L⇥n with columns fu = [fu,1, fu,2, · · · , fu,L]
corresponding to the requests of each user u 2 U . The
realization of F is denoted as F = [f1, f2, · · · , fn], where
fu = (fu,1, fu,2 . . . , fu,L)T. The caching problem includes
two distinct operations: the caching phase and the delivery
phase. The caching phase (cache configuration) is done a
priori, as a function of the files in the library, but does not
depend on the request matrix realization F. Then, during the
delivery phase, at each time slot, given the current request
matrix realization F, the source forms a multicast codeword
and transmits it over the shared link such that all users can
decode their requested files. Formally, we have:

Definition 1: (Caching Phase) The caching phase is a
mappin of the file library F onto the user caches. Without
loss of generality, we represent files as vectors over the binary
field F2. For each u 2 U , let �u : FmF

2 ! FMF
2 denote the

caching function of user u. Then, the cache content of user u
is given by Zu , �u(Wf : f = 1, · · · , m), where Wf 2 FF

2

denotes the f -th file in the library. ⌃
Definition 2: (Delivery Phase) At each use of the network,

a realization of the random request matrix F 2 F
L⇥n is

generated. The multicast encoder is defined by a fixed-to-
variable encoding function X : FmF

2 ⇥ F
L⇥n

! F⇤

2 (where
F⇤

2 denotes the set of finite length binary sequences), such
that X({Wf : f 2 F},F, Zu) is the transmitted codeword.

We denote by J({Wf : f 2 F},F) the length function
(in binary symbols) associated to the encoding function X .
Each user receives X({Wf : f 2 F},F) through the
noiseless shared link, and decodes its requested file Wfu,l ,
l = 1, · · · , L, as (cWfu,1 ,cWfu,2 , · · · ,cWfu,L) = �u(X, Zu,F),
where �u : F⇤

2 ⇥FMF
2 ⇥ F

L⇥n
! FLF

2 denotes the decoding
function of user u. The concatenation of 1) demand vector
generation, 2) multicast encoding and transmission over the
shared link, and 3) decoding, is referred to as the delivery
phase. ⌃

We refer to the overall content distribution scheme, formed
by both caching and delivery phases, directly as a caching
scheme, and measure the system performance in terms of the
rate during the delivery phase. In particular, we define the rate
of the scheme as

R(F ) = sup
{Wf :f2F}

E[J({Wf : f 2 F},F)]

F
, (1)

where the expectation is with respect to the random request
vector.1

Consider a sequence of caching schemes defined by cache
encoding functions {Zu}, multicast coding function X , and
decoding functions {�u}, for increasing file size F =
1, 2, 3, . . .. For each F , the worst-case (over the file library)
probability of error of the corresponding caching scheme is
defined as

P (F )
e ({Zu}, X, {�u}) =

sup
{Wf :f2F}
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�u(X,Zu,F)

6= (Wfu,1 , · · · , Wfu,L)
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. (2)

A sequence of caching schemes is called admissible if
limF!1 P (F )

e ({Zu}, X, {�u}) = 0. Achievability for our
system is defined as follows:

Definition 3: A rate R(n, m, M, L,q) is achievable for the
shared link caching network with n users, library size m, cache
capacity M , number of requests L, and demand distribution
q, if there exists a sequence of admissible caching schemes
with rate R(F ) such that

lim sup
F!1

R(F )
 R(n, m, M, L,q). (3)

⌃
We let R⇤(n, m, M,q) denote the infimum (over all caching

schemes) of the achievable rates. The notion of “order-
optimality” for our system is defined as follows:

Definition 4: Let n, M, L be functions of m, such that
limm!1 n(m) = 1. A sequence of caching schemes for the
shared link caching network with n users, library size m, cache
capacity M , number of requests L, and demand distribution
q, is order-optimal if its rate R(n, m, M, L,q) satisfies

lim sup
m!1

R(n, m, M, L,q)
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 ⌫, (4)

1Throughout this paper, we directly use “rate” to refer to the average rate
defined by (1) and explicitly use “average (expected) rate” if needed for clarity.S 
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ü Multiple Caches divided in two classes:
• [Karamchandani-Diggavi-Caire-Shamai, 2016]

– Two links (1 & 2) between caches and source.
– One class receiving only from link 1 the other from both links  cache size M.

• [Bidokhti-Wigger-Timo, 2016]
– Weak receivers with equal “large” BC erasure probabilities and cache size M.
– Strong receivers with equal “small” BC erasure probabilities with zero cache-size.
– This especially useful in a designing  phase for dimensioning the caches

üGeneral Setting [Cacciapuoti-Caleffi-Ji-Llorca-Tulino, 2016]
• Channel, cache size, demand distribution, number of requested files arbitrary across users
• Random Fractional Caching 
• Channel-Aware Chromatic Index Coding 

Heterogeneous Channels
ü Two Caches [Asadi-Ong-Johnson, 2015] 

• Capacity-memory  trade off of two cache-aided receiver broadcast channel. 
• Each receiver side information is part of the private message of the other.

Special settings 



Extension to different network topologies
Tree Topology:
CM with routing at intermediate 
nodes 

Multiserver/linear network 

Combination network 
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Coded Caching for tree networks

• Tree network with intermediate routers (no intermediate node caching).

11

RC(sN/K)

p(s)

RC(M)0

Fig. 4. Concentration of the rate terms in the convex combination (4) expressing the rate of the decentralized coded caching scheme RD(M)
around the rate RC(M) of the centralized coded caching scheme. The curves are for different values of N � {23, 24, . . . , 210} with K = N
and M =

�
N . Each curve depicts p(s) versus RC(sN/K) parametrized by s � {0, 1, . . . , K}.

A. Tree Networks
The basic problem setting considered so far considers users connected to the server through a single

shared bottleneck link. We showed that the rate of our proposed algorithm over the shared link is within
a constant factor of the optimum. Here we extend this result to more general networks with tree structure
(see Fig. 5).

u

v

Fig. 5. Network with tree structure. A server containing N files of size F bits each is connected through a tree-structured network to K
users each with a cache of size MF bits. Internal nodes of the tree represent routers. In this figure, N = K = 6, and M = 1. The proposed
placement and delivery procedures together with a routing algorithm achieves the order-optimal rate over every link (u, v) of the network.

Consider a directed tree network, oriented from the root to the leaves. The server is located at the
root of the tree, and users with their caches are located at the leaves. Each internal node of the network
represents a router. The router decides what to transmit over each of its outgoing links as a function of
what it received over its single incoming link from its parent.
We again assume that the system operates in two phases. In the placement phase, the caches are

populated without knowledge of users’ future demands. In the delivery phase, the users reveal their
requests, and the server has to satisfy these demands exploiting the cached content.
For this network, we propose the following caching and routing procedures. For the placement phase,

we use the same placement procedure as in Algorithm 1. For the delivery phase, we use the two delivery
procedures detailed in Algorithm 1, but with the simplified decision rule explained in Remark 4. In other

20

Shared Caches



• Ji, M., Wong, M.F., Tulino, A.M., Llorca, J., Caire, G., Effros, M. and Langberg, M., IEEE SPAWC 2015 . 

• M. Ji, A. M. Tulino, J. Llorca, G. Caire, IEEE ASILOMAR, 2015

• Kai Wan, Daniela Tuninetti, Mingyue Ji, and Pablo Piantanida, IEEE ASILOMAR, 2017 

Simple achievable scheme: concatenation of classical Cache-Aided Coded Multicast (CCM) and 
MDS coding combined with naive multicasting of all the library and routing (naive unicast), is 
given by:

not optimal BUT completely topology-agnostic. 

Recently extensions with caches at the relays 

Combination network 

relays with 
no caches

Maximum link load = Load ≃ min

⇢
K

k
(1� µ),

K(1� µ)

r(1 +Kµ)
,
N

r

�
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• Hachem, Karamchandani, Diggavi, TIT 63(5), 2017, 
• G. Vettigli, M. Ji, K. Shanmugan, J. Llorca, A. Tulino, G. Caire, MDPI Entropy, March 2019
• Parrinello, Unsal and Elia, arXiv:1809.09422, : 2018

Shared Caches

The goal is to minimize the worst-case load over the shared link (backhaul). 

Each user receives from L distinct BSs 

K(1� Lµ)

1 +Kµ
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L = BSs serving each user L = Number of BSs
K(1� µ)

N0(1 + Lµ)
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Each user receives from one BS with N0 antennas 
number users served by each BS    N0≥

Interplay between shared caches and multiple antennas:
• adding 1 degree of cache-redundancy increases a DoF to N0, 
• going from 1 to No antennas reduces delivery time by N0. 



Combination of both unicast and network-coded multicast
Two main building blocks: 

a a satellite-enabled broadcast distribution backbone leveraging the CCM in order to improve both
performance and security of the transmissions; 

a MPEG-DASH/WebRTC-enabled edge distribution network. 

Secure Hybrid In Network caching Environment
SHINE

Goal:
E2E secure delivery of multimedia content over integrated 
satellite-terrestrial cache-aided networks. 

(ii) leveraging cutting-edge streaming technologies (MPEG-DASH WebRTC) to optimize E2E content distribution

(i) relying  cache-aided coded multicast to improve both performance and security of communications. 

S. P. Romano, C. Roseti, A. M. Tulino, ISNCC, 2018
SHINE: Secure Hybrid In Network caching Environment, ESA Project 2017-2019



So far… 
used previously in-network stored exact copies of the information that need to be delivered as references for network compression during delivery
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Moving towards real-time
(personalized media dominated) 
services exact cache hits are 
almost non-existent.

BUT

Updated versions of dynamic data 
can exhibit high levels of correlation

What about 
Approximate Content

Matching
(e.g. correlation)

Dynamic Network Compression
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So far… 
used previously in-network stored exact copies of the information that need to be delivered as references for network compression during delivery



Dynamic Network Compression 
Compressing information as it travels through the network

Static local compression is myopic to spatiotemporal 
information lifecycle

We still compress information based solely on local intra-file 
correlations, without taking into account increasingly relevant 
network-wide spatiotemporal correlations

Dynamic e2e compression adaptively exploits redundancy 
throughout the network

Exploiting cloud network wide spatiotemporal redundancy to push 
the fundamental limits of information compression

FROM STATIC LOCAL COMPRESSION TO DYNAMIC NETWORK COMPRESSION

Previously stored information are exploited as references for network compression during delivery



Towards dynamic E2E network compression 

[Timo, Bidokthi, Wigger and Geiger TIT’18]: 
• Lossy reconstruction.
• Two receivers and one cache, no coded multicasting. 

[Op ’t Veld and Gastpar ISIT’17]: 
• Lossy reconstruction Gaussian sources. 
• Distortion-rate-memory region two files. 

[Yang and Gunduz ICC’18]: 
• Specific correlation structure. 
• Worst-case rate-memory trade-off. 

[Hassanzadeh, Tulino, Llorca, Erkip, ITW’2016, TIT’20] 
• Lossless reconstruction.
• Arbitrary correlated sources.
• Dynamic content.
• General system parameters, prove optimality in some cases. 

Cache-Aided Coded Multicast with Correlated library  



• Library Compression Approach
• Two step approach: 
• Step 1: Sender jointly compresses the library. 

• Gray-Wyner source-coding. 
• Step 2: Correlation-unaware caching and coded multicast. 

• Multiple-request scheme. 

• On-demand Compression Approach
• Store individually compressed. 
• Deliver jointly compressed 

Towards dynamic E2E network compression 
Cache-Aided Coded Multicast with Correlated library  



• Library Compression Approach
• Two step approach: 
• Step 1: Sender jointly compresses the library. 

• Gray-Wyner source-coding. 
• Step 2: Correlation-unaware caching and coded multicast. 

• Multiple-request scheme. 

• On-demand Compression Approach
• Store individually compressed. 
• Deliver jointly compressed 

• Effective for Static Library
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• Library Compression Approach
• Two step approach: 
• Step 1: Sender jointly compresses the library. 

• Gray-Wyner source-coding. 
• Step 2: Correlation-unaware caching and coded multicast. 

• Multiple-request scheme. 

• On-demand Compression Approach
• Store individually compressed. 
• Deliver jointly compressed 

• Effective for Dynamic Library

Towards dynamic E2E network compression 
Cache-Aided Coded Multicast with Correlated library  



Approach 1: Library Compression-Based

Correlated files.
Lossless reconstruction.

Separate Compression and Caching/Delivery

Parisa Hassanzadeh, Ph.D. Defense 15/ 56

Correlation Unaware 
Cache-aided Coded 
Multicast scheme

Compressed 
Library

• Library Compression Approach (two step approach):
• First compress the library 
• Then apply a correlation unaware CCM (Cache-aided Coded Multicast) scheme 

which assume independent files and consisting of
• a cache phase (to populate caches)
• a delivery phase     

Towards dynamic E2E network compression 
Cache-Aided Coded Multicast with Correlated library  
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• Library Compression Approach (two step approach):
• First compress the library 
• Then apply a correlation unaware CCM (Cache-aided Coded Multicast) scheme 

which assume independent files and consisting of
• a cache phase (to populate caches)
• a delivery phase     

Compressed 
Library

Correlation Unaware 
Cache-aided Coded 
Multicast scheme

Towards dynamic E2E network compression 
Cache-Aided Coded Multicast with Correlated library  



Example two files Two Files and Two Receivers

Sender: library compression.

Multiple-request scheme: particular demand.
Treat sublibraries independently.

Parisa Hassanzadeh, Ph.D. Defense 17/ 56

• Multiple-request scheme: 
• particular demand. 

• Treat sublibraries independently. 

Two Files and Two Receivers

Sender: library compression.

Multiple-request scheme: particular demand.
Treat sublibraries independently.
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Two Files and Two Receivers

Sender: library compression.

Multiple-request scheme: particular demand.
Treat sublibraries independently.
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Two Files and Two Receivers

Sender: library compression.

Multiple-request scheme: particular demand.
Treat sublibraries independently.

Parisa Hassanzadeh, Ph.D. Defense 17/ 56

Common Sub-library

Private Sub-library



• Library Compression Approach (two step approach):

Multiple-Request 
Multicast Encoder Gray-Wyner

Decoder

Approach 1: Library Compression-Based

Correlated files.
Lossless reconstruction.

Separate Compression and Caching/Delivery

Parisa Hassanzadeh, Ph.D. Defense 15/ 56

Multiple-Request 
Multicast DecoderCache ŴF

k
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Gray-Wyner
Source Coding

Multiple-Request 
Multicast Encoder

Approach 1: Library Compression-Based

Correlated files.
Lossless reconstruction.

Separate Compression and Caching/Delivery
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Gray-Wyner
Source Coding

Multiple-Request 
Cache Encoder

• First compress the library 

• Caching Phase

• Delivery Phase

Towards dynamic E2E network compression 
Cache-Aided Coded Multicast with Correlated library  
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Gray-Wyner
Source Coding

Multiple-Request 
Multicast Encoder

Approach 1: Library Compression-Based

Correlated files.
Lossless reconstruction.

Separate Compression and Caching/Delivery

Parisa Hassanzadeh, Ph.D. Defense 15/ 56

Gray-Wyner
Source Coding

Multiple-Request 
Cache Encoder

• Caching Phase

• Delivery Phase

• Then apply multiple request CCM 
scheme for independent files.

Towards dynamic E2E network compression 
Cache-Aided Coded Multicast with Correlated library  



Library Compression Approach
Optimality Results:

• Two files and K users:
• Optimal for small and large memory.
• Half of the conditional entropy of files elsewhere. 

• Two files and two users: 
• Optimal over a larger region. 
• Optimal for special source. 

• Extension to three files: 
• Optimal for large memory.
• Half of H(W1, W2 | W3) elsewhere. 

• Lower bound on the optimal load-memory trade-off. 

Shortcomings of this Approach
• Not robust to system dynamics: a new file is added. 

• Jointly re-compressed entire library. 
• Update receiver caches. 

• General setting with multiple files and receivers. 



On-demand Compression Approach

Multiple-Request 
Cache Encoder

Approach 1: Library Compression-Based

Correlated files.
Lossless reconstruction.

Separate Compression and Caching/Delivery

Parisa Hassanzadeh, Ph.D. Defense 15/ 56
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Approach 1: Library Compression-Based

Correlated files.
Lossless reconstruction.

Separate Compression and Caching/Delivery
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Correlation Aware 
Multiple-Request 
Multicast Decoder

Cache

ŴF
k

<latexit sha1_base64="SllY+giL+Fh0Eh9g8EMmjm9o2CM=">AAAB83icbVDLSgNBEOz1GeMr6tHLYBA8hd0o6DEoiMcI5gHZNcxOZpMhsw9meoWw5De8eFDEqz/jzb9xNtmDJhY0FFXddHf5iRQabfvbWlldW9/YLG2Vt3d29/YrB4dtHaeK8RaLZay6PtVcioi3UKDk3URxGvqSd/zxTe53nrjSIo4ecJJwL6TDSASCUTSS644oZp1pf/x4W+5XqnbNnoEsE6cgVSjQ7Fe+3EHM0pBHyCTVuufYCXoZVSiY5NOym2qeUDamQ94zNKIh1142u3lKTo0yIEGsTEVIZurviYyGWk9C33SGFEd60cvF/7xeisGVl4koSZFHbL4oSCXBmOQBkIFQnKGcGEKZEuZWwkZUUYYmpjwEZ/HlZdKu15zzWv3+otq4LuIowTGcwBk4cAkNuIMmtIBBAs/wCm9War1Y79bHvHXFKmaO4A+szx+EfZFW</latexit>

Correlation aware
Multiple Requests 
Multicast Encoder

Approach 1: Library Compression-Based

Correlated files.
Lossless reconstruction.

Separate Compression and Caching/Delivery

Parisa Hassanzadeh, Ph.D. Defense 15/ 56

• Caching Phase

• Delivery Phase

Correlation-Aware Cache Encoder. 
• Divide each file into equal-size packets. 
• Cache based on correlations and popularity. 

Correlation-Aware Multicast Encoder 
• Use network cached information as 

reference for compression during delivery. 

Very Efficient in Dynamic content services. 



• Deterministic cache 
placement. 

• Static library.

• Two files and two 
receivers. 

Cache-Aided Coded Multicast with Correlated library  

Two-File Two-Receiver Network

Static library.
Two files and two receivers.
Deterministic cache placement.

Parisa Hassanzadeh, Ph.D. Defense 27/ 56
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Cache-Aided Coded Multicast with Correlated library
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Correlation−Aware Coded Multicast
Coded Multicast
Unicast

7.8x

Turning memory 
into Bandwidth  

Un-coded
Exact match Coded low complexity
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Numerical Results: Number of Receivers

Static library.
N = 1000 files.
Cache size M = 0.1⇥ library size.
Correlation parameter � = 0.1: G� = 4 correlated packets.

Parisa Hassanzadeh, Ph.D. Defense 33/ 56

N = 1000 files.
Cache size M = 0.1× library size. Correlation parameter δ = 0.3

N = 30 files
K= 10 users

Correlation parameter δ = 0.3

1.8x

1.6x

L
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Performance assessments   

K users



Existing systems don’t use coding and end up 
unnecessarily keeping old versions to ensure 
consistency via replication (e.g., Microsoft 

Azure) leading to unbearable cloud resource 
usage, specially for highly dynamic data.

Holistic analytical understanding of the 
fundamental trade-offs between 

consistency, freshness, storage cost, and 
access latency. Efficient codes able to 
approach such fundamental trade-offs.

Extend the benefits of distributed cloud 
storage (low latency access, robustness to 
failures) to highly dynamic applications, 
where the main challenges are data 

freshness and consistency

Efficient Storage of Dynamic Data in Distributed Clouds
Rapid access to fresh and consistent data without costly replication

BASELINE BREAKTHROUGHBIG CHALLENGE

A NOVEL INFORMATION THEORETIC FRAMEWORK FOR CONSISTENT DELIVERY 
OF FRESH DYNAMIC DATA  

[Wang and Cadambe, TIT’14], [Ali, Cadambe, Llorca, Tulino, TC’20]   



Outline

• Real-time Computation
Efficient Service Configuration (Storage/Computation/Delivery)
• Network Slicing (NFV/SDN)
• Mobile Edge Computing (MEC)
• Real-time Stream processing 

Information
Theory

Communication 
and Coding

Theory
Network Theory Statistical  

Physics 

Stochastic  
Optimization Random Matrix 

Theory  
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CLOUD-INTEGRATED NETWORKS AS UNIVERSAL COMPUTE PLATFORMS

VF

VF

VF

VF

APP

Cloud Network Slice

M. Weldon, “The Future X Network: A Bell Labs Perspective,” CRC PRESS, October 2015. 

Every human experience will be supported by a collection of services running over a cloud-integrated 
network. 
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CLOUD-INTEGRATED NETWORKS AS UNIVERSAL COMPUTE PLATFORMS

APP

APP

…

VF

VF

VF

VF

VF

VFVF

Cloud Network Slice

M. Weldon, “The Future X Network: A Bell Labs Perspective,” CRC PRESS, October 2015. 

These services take information sources from the physical world, route them through multiple 
functions instantiated across the cloud network until delivering output flows that create some form of 
augmented value for the end user
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CLOUD-INTEGRATED NETWORKS AS UNIVERSAL COMPUTE PLATFORMS

VF

VF

APP

APP

…

Elastic Network 
Resources

Elastic Cloud 
Resources

VF

Cloud Network Slice

VF

VFVF

VF

• Opportunities
• Users can consume 

resource- and interaction-
intensive applications from 
resource-limited devices

• Operators can reduce costs 
and create new value-
added services

• Overall sustainability

• Challenges
• Optimized elastic 

consumption of 
compute/storage/network 
resources

• End-to-end autonomous 
configuration and control
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Request time-scale

Network time-scale

Service time-scale

CLOUD NETWORK OPTIMIZATION AND CONTROL

• Physical resource allocation (months, weeks)
- Physical site/link deployment/consolidation
- Compute/storage/network equipment

• Service distribution (days, hours)
- Data/function placement/migration
- Cloud/network vResource allocation

• Virtual resource auto-scaling (minutes, seconds)
- Virtual resource scale up/down
- Virtual resource scale out/in

• Information flow (seconds, milliseconds)
- Request routing
- Flow scheduling
- Load balancing

Distributed, 
reactive

Centralized, 
proactive

Reconf. 
cost/time

Innovation/market 
time-scale
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Request time-scale

Network time-scale

Service time-scale

CLOUD NETWORK OPTIMIZATION AND CONTROL

• Physical resource allocation (months, weeks)
- Physical site/link deployment/consolidation
- Compute/storage/network equipment

• Service distribution (days, hours)
- Data/function placement/migration
- Cloud/network vResource allocation

• Virtual resource auto-scaling (minutes, seconds)
- Virtual resource scale up/down
- Virtual resource scale out/in

• Information flow (seconds, milliseconds)
- Request routing
- Flow scheduling
- Load balancing

Distributed, 
reactive

Centralized, 
proactive

Reconf. 
cost/time

• Barcelo, Llorca, Tulino, Raman, “The Cloud Service Distribution Problem in Distributed Cloud Networks,” IEEE ICC, 2015. 
• Barcelo, Llorca, Tulino, Morell, Vicario, “IoT-Cloud Service Optimization in Smart Environments,” IEEE JSAC, 2016. 
• Feng, Llorca, Tulino, Raz, Molisch “Approximation Algorithms for the NFV Service Distribution Problem,” IEEE INFOCOM, 2017.
• Poularakis, Llorca, Tulino, Tassiulas, “Joint Service Placement and Request Routing in Multi-Cell Edge Computing Networks,” IEEE INFOCOM, 2019.
• Michael, Llorca, Tulino, “Approximation Algorithms for the Optimal Distribution of Real-time Stream-Processing Services,” IEEE ICC, 2019

Innovation/market 
time-scale

• E2E Service Optimization
- Function placement and flow routing
- Cloud/network resource allocation
- Centralized solution with average 

demand knowledge 
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Request time-scale

Network time-scale

Service time-scale

CLOUD NETWORK OPTIMIZATION AND CONTROL

• Physical resource allocation (months, weeks)
- Physical site/link deployment/consolidation
- Compute/storage/network equipment

• Service distribution (days, hours)
- Data/function placement/migration
- Cloud/network vResource allocation

• Virtual resource auto-scaling (minutes, seconds)
- Virtual resource scale up/down
- Virtual resource scale out/in

• Information flow (seconds, milliseconds)
- Request routing
- Flow scheduling
- Load balancing

Distributed, 
reactive

Centralized, 
proactive

Reconf. 
cost/time

• E2E Service Optimization
- Function placement and flow routing
- Cloud/network resource allocation
- Centralized solution with average 

demand knowledge 

• Dynamic Service Control
- Dynamic flow scheduling and virtual 

resource auto-scaling
- Distributed online solution

• Feng, Llorca, Tulino, Molisch, “Dynamic Service Optimization in Distributed Cloud Networks,” IEEE INFOCOM SWFAN, 2016.
• Feng, Llorca, Tulino, Molisch, “On the Delivery of Augmented Information Services over Wireless Computing Networks,” IEEE ICC, 2017.
• Zhang, Sinha, Llorca, Tulino, Modiano, “Optimal Control of Distributed Computing Networks with Mixed-Cast Traffic Flows,” IEEE INFOCOM, 2018.
• Feng, Llorca, Tulino, Molisch, “Optimal Dynamic Cloud Network Control,” IEEE/ACM Transactions on Networking, 2018.
• Feng, Llorca, Tulino, Molisch, “Optimal Control of Wireless Computing Networks,” IEEE Transactions on Wireless Communications, 2018.

Innovation/market 
time-scale
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Request time-scale

Network time-scale

Service time-scale

CLOUD NETWORK OPTIMIZATION AND CONTROL
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• E2E Service Optimization
- Function placement and flow routing
- Cloud/network resource allocation
- Centralized solution with average 

demand knowledge 

• Dynamic Service Control
- Dynamic flow scheduling and virtual 

resource auto-scaling
- Distributed online solution

Innovation/market 
time-scale

• Barcelo, Llorca, Tulino, Raman, “The Cloud Service Distribution Problem in Distributed Cloud Networks,” IEEE ICC, 2015. 
• Barcelo, Llorca, Tulino, Morell, Vicario, “IoT-Cloud Service Optimization in Smart Environments,” IEEE JSAC, 2016. 
• Feng, Llorca, Tulino, Raz, Molisch “Approximation Algorithms for the NFV Service Distribution Problem,” IEEE INFOCOM, 2017.
• Poularakis, Llorca, Tulino, Tassiulas, “Joint Service Placement and Request Routing in Multi-Cell Edge Computing Networks,” IEEE INFOCOM, 2019.
• Michael, Llorca, Tulino, “Approximation Algorithms for the Optimal Distribution of Real-time Stream-Processing Services,” IEEE ICC, 2019

THIS TALK
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VF

VF

VF

VF

VFVF

VF

Function 
Placement

Flow 
Routing

Cloud 
resource 
allocation

Network 
resource 
allocation

…APP

APP

…

JOINT END-TO-END SERVICE OPTIMIZATION

• Function placement
- Function chaining, splitting, and replication

• Flow routing
- Flow scaling 
- Mix of unicast and multicast traffic 
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EXISTING APPROACHES
COMPLEX DISJOINT SOLUTIONS

VF

VF

VF

VF

VFVF

VF

Function 
Placement

Flow 
Routing

Cloud 
resource 
allocation

Network 
resource 
allocation

…APP

APP

…

Facility 
Location

Multi-commodity 
Flow

• Driven by old vision of cloud and network separation
• No joint placement/routing optimization
• Unacceptable QoE, limited knowledge augmentation, and/or unsustainable costs with resource overprovisioning.

Separate data/function placement, flow routing, cloud and network resource allocation
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Function 
Placement

Flow 
Routing

Cloud 
resource 
allocation

Network 
resource 
allocation

…APP

APP

…

CLOUD NETWORK FLOW APPROACH

CLOUD NETWORK FLOW

• Comprehensive model
- Arbitrary flow chaining, scaling, splitting, and replication
- Arbitrary traffic mix (unicast and multicast flows)
- Non-isomorphic embeddings

• Approximation guarantees

VF

VF

VF

VF

VFVF
VF
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o1 o2 o3 o4

Service 
Graph

CLOUD NETWORK FLOW APPROACH

• Directed acyclic graph that encodes the relationship 
between service functions and associated 
input/output flows

1. Service Graph
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o1 o2 o3 o4

Service 
Graph

CLOUD NETWORK FLOW APPROACH:

• Directed acyclic graph that encodes the relationship 
between service functions and associated 
input/output flows

• Control/data plane as well as hardware/software 
based functions

• Heterogeneous function complexity (proc. res. units 
per flow unit) and flow scaling (output flow units 
per input flow unit)
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1. Service Graph
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CLOUD NETWORK FLOW APPROACH

• Mixed-cast multi-commodity-chain flow on a 
cloud-augmented graph

• Includes and generalizes placement and network 
flow problems

• Captures combined use of 
compute/storage/transport resources, unicast and 
multicast flows, and flow/function chaining, 
scaling, splitting, and replication

• Admits optimal polynomial time solutions under 
linear costs and splittable flows, and efficient 
approximations otherwise
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CLOUD NETWORK FLOW
3. Mixed-cast chained information flow
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CLOUD NETWORK FLOW
3. Mixed-cast chained information flow

Cost 
Function

Generalized Flow 
Conservation

Sources and 
Demands

Flow Chaining

Actual flow 
sizing

Fractional/ 
Integer 
flows

• Fractional flows

- Good for network slices

- Large aggregate flows

- Per-flow splitting

• Integer flows

- Good for individual services

- Unsplittable flows
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SERVICE CLASSIFICATION AND SOLUTIONS

Unicast Multicast

Splittable Unsplittable Splittable Unsplittable

Service Chain Polynomial

FPTAS

NP-Hard

Bicriteria
approx.

NP-Hard (no 
coding)

NP-Hard

Bicriteria
approx.

Service DAG NP-Hard (no 
coding

NP-Hard

Bicriteria
approx.

NP-Hard (no 
coding)

NP-Hard

Bicriteria
approx.
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SERVICE CLASSIFICATION AND SOLUTIONS
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NETWORK SERVICE CHAINS
• Network: Generic US Metro
- 4 Metro PoP, 12 Metro Agg, 60 Metro Edge
- 10G links, CloudBand compute nodes

• Service: Fixed Residential Video
- Data plane: vCDN, vBNG, FAN, CPE
- Control Plane: vCDN, vBNG, vFAN, vCPE

• Demand:
- 2014, 2018, 2022 video traffic
- 50% VoD, 40% VS, 10% IPTV
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SMART CITY SERVICES

• IoT-Cloud Network:
- Cloud layer (core, metro, edge)
- Access layer
- Device layer
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• City Streams Service:
- Deliver contextually relevant 

personalized city streams

• Operational cost as a function of 
personalized stream data rate
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WORLD WIDE STREAMS (WWS)

• Distributed stream processing platform

• Produces and delivers streams of real-time 
relevance to geographically dispersed users via 
the real-time processing of geographically 
dispersed source streams
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WORLD WIDE STREAMS

Service graph:

Cloud network 
graph:

World Knowledge-Informed Streaming Service Distribution Submi�ed for review to SIGCOMM, 2018

• Overall, historical building are twice as often requested
as soccer games. (2-to-1 ratio among the template in-
stances)

• Overall, related to the scene classi�er’s four distin-
guished classes, portraits (sel�es), outdoor scenes, in-
door scenes and other are known to occur in a 0.3-0.4-
0.2-0.1 distribution.

Based on generic permutation and equivalence rules stated
in the World Model, the Speci�cation Compiler annotates
the three-operator sub-graph from Composition Analyzer up
toObject Detector (video �lter sub-graph) to have as function-
ally invariant implementation variants, the 6 permutations
variants of the 3 operators, 3 variants due to optionality
of the Scene Classi�er when combined with the more expen-
siveObject Detector, and 3 variants whereObject Detector and
Composition Analyzer are working on parallel streams joined
with an AND-operator. All edges in the 12 variants-enriched
graph are further annotated with their NPoP-conditional
probability distributions.

As a means to verify sensitivity of selection and placement
to theWorld Model, we also consider the cases of entirely �at
PRM statistics (“�at” ), and a case where the operators in the
video �lter sub-graph are extremely lucky in detecting what
they are after, thus boosting the expected output volumes of
the concerned operators to 85% (“lucky” ).
Based on the dimensioning of the experiment, the Data

Flow Compiler derived a worst-case, su�ciently �ne-grained
scaled graph expansionwith the video preprocessing pipeline
instantiated per source base station, aggregating to a single
operator instance pipeline for each of the two template in-
stances, to end with a two-stage-scaled double, overlapping
tree of the �nal Media Server Multicast, using its recursive
operator de�nition.

The variant-enriched, expanded, fully stream volume esti-
mates annotated graph is further processed by the Placement
Solver to obtain a solution for the currently requested service
collection, deciding on graph variant selection and gener-
alized placement. For the automatic variant selection, the
Placement Solver considers the < and > pseudo-operators as
regular operators, which however force the selection of only
one variant exclusively (unless partitioning across multiple
variants is foreseen by the expanded graph). To be neutral
on the actual placement cost criterion, they are treated as
having zero compute cost and zero additional transport cost.

6.3 Placement decision evaluation
We have done this experiment for the real PRM estimates,
and for the “�at” and the “lucky” validation statistics, to get
an indication of the sensitivity of the solution to the PRM
data with our approach. As a baseline, we compared this
to a manual, heuristic placement as was regularly used in

WWS �eld trials, where a video processing expert decides on
the deployed graph variant, applying an informal heuristic
putting video processing topologically as close as possible
to the sources, considering operators to be either video-in,
video-out, video-in-and-out, or low data rate. Table 1 sum-
marizes the obtained results in terms of variant selected and
overall resulting cost estimation.

The video expert assumed the variant as in the template to
be the best overall strategy, which after placement turns out
to have an estimated cost of 1.50 cEUR/h for the given case.
The semi-manual, heuristic placement was concluded to be
sound and intuitive by placing an instance of the prepro-
cessing and video �lter sub-graph for the historical buildings
service instance in each of the three edge cloud clusters, an
instance of that sub-graph for the soccer games service in-
stance in the Paris edge cloud cluster only, and the remainder
of the two pipeline on the central AWS cloud, except for the
second Media Server Multicast stage for which an instance
was again placed in each of the lab edge cloud clusters.

Table 1: Overview of selection and placement results

Expert Real PRM “�at” “lucky”
Baseline

Total Cost 1.50 0.70 1.68 2.60
(cEUR/h)
Variant Var. 1 Var. 4 Var. 4 Var. 4
selected (manual) (autm.) (autm.) (autm.)
Placement “Video close Smart Mostly Mostly

note to source” distrib. AWS AWS

Compared to that baseline, the real PRM-informed place-
ment solution, automatically generated with our approach,
selected a di�erent variant, variant 4, which is a non-paralleled
pipeline where Scene Classi�er is executed before Composi-
tion Analyzer, obtaining an estimated total cost of only 0.70
cEUR/h, which is almost a 50% improvement over the base-
line. This is not only to be attributed to a better placement
but also to a better estimation of the stream volumes as such,
for which thus a lower amount of resources must be pre-
allocated thanks to our new method. Quite di�erent from
the expert-assisted baseline placement, the placement with
our new autonomous method pushes all video �lter pipeline
sub-graphs in the Paris lab edge cloud cluster, with part
of the decoder operators for Paris-located cameras even in
their BSG edge, and the �nal pipeline from Stream Selector
to Multicast respectively in NYC, for the historical buildings
instance, and in Antwerp, for the soccer game instance.
For the “�at” case, which is a reasonable assumption for

stream volume estimationwithout any real-world knowledge
being injected, we see a considerable di�erence compared to

11

2X-4X
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CONCLUSIONS
• Networks are becoming universal compute platforms, able to host a variety of services and 

applications that can optimize the automated operation of physical systems and augment human 
experiences in real time. 

• New mathematical tools are required to jointly optimize the allocation of compute, storage, and 
network resources, as well as the efficient flow of information over such highly distributed 
computing infrastructures.

• Dynamic cloud-network compression aims to an E2E compression of information throughout its 
entire lifecycle - capture/creation, upload, storage, computation, and delivery – in order to 
maximize conveyed information per unit cost 

• Using  cloud-network-wide spatiotemporal redundancy to push the fundamental limits of 
information compression, pioneering algorithms in network compression, including compressed 
video delivery with up to 8X capacity gains has been designed.

• Cloud network flow generalizes traditional network information flow models to jointly capture the 
efficient storage, computation, and delivery of information of real-time relevance.

• Significant efficiency improvements can be obtained via the end-to-end optimization of next 
generation services over distributed cloud-integrated networks.
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