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Motivation

; Discrete time series are often hard
Inference Signal processing
Machine learning Communications

; Difficulty: Memory modelling
E.g. for a binary time series with memory length of only 20 bits

220 parameters must be estimated before even getting started

; Need A LOT of data

; Difficulty: Big Data

Most existing methods do not realistically scale with large data

Even “Big Data” are not enough for classical estimation

; Need for smarter, parsimonious models



Earlier Work

4 The starting point of our work is based in part on:

; Rissanen’s 1983 – 1986 fundamental work on
the Minimum Description Length (MDL) principle
and the introduction of tree/FSMX sources

; The basic results of Willems et al on data compression
via Context Tree Weighting (CTW) and related algorithms

4 Some of our first results can be seen as generalizations or extensions
of results and algorithms in these earlier works

4 Here we ignore the information-theoretic connection entirely
and present everything from the point of view
of Bayesian statistics (and applications)

4 Our framework can also be viewed as a Bayesian version
of Bühlmann et al’s VLMC
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Applications

Model selection Estimation Change-point detection

Segmentation Anomaly detection Markov order estimation

Filtering Prediction Entropy estimation

Causality testing Compression Content recognition



Variable-Memory Markov Chain Models

Markov chain {. . . , X0, X1, . . .} with alphabet A = {0, 1, . . . ,m− 1}
of size m



Variable-Memory Markov Chain Models

Markov chain {. . . , X0, X1, . . .} with alphabet A = {0, 1, . . . ,m− 1}
of size m

Memory length d P (Xn|Xn−1, Xn−2, . . .) = P (Xn|Xn−1, Xn−2, . . . , Xn−d)



Variable-Memory Markov Chain Models

Markov chain {. . . , X0, X1, . . .} with alphabet A = {0, 1, . . . ,m− 1}
of size m

Memory length d P (Xn|Xn−1, Xn−2, . . .) = P (Xn|Xn−1, Xn−2, . . . , Xn−d)

Distribution To fully describe it, we need to specify

md conditional distributions P (Xn|Xn−1, . . . , Xn−d)

one for each context (Xn−1, . . . , Xn−d)



Variable-Memory Markov Chain Models

Markov chain {. . . , X0, X1, . . .} with alphabet A = {0, 1, . . . ,m− 1}
of size m

Memory length d P (Xn|Xn−1, Xn−2, . . .) = P (Xn|Xn−1, Xn−2, . . . , Xn−d)

Distribution To fully describe it, we need to specify

md conditional distributions P (Xn|Xn−1, . . . , Xn−d)

one for each context (Xn−1, . . . , Xn−d)

Problem md grows very fast, e.g., with m = 8 symbols

and memory length d = 10, we need ≈ 109 distributions



Variable-Memory Markov Chain Models

Markov chain {. . . , X0, X1, . . .} with alphabet A = {0, 1, . . . ,m− 1}
of size m

Memory length d P (Xn|Xn−1, Xn−2, . . .) = P (Xn|Xn−1, Xn−2, . . . , Xn−d)

Distribution To fully describe it, we need to specify

md conditional distributions P (Xn|Xn−1, . . . , Xn−d)

one for each context (Xn−1, . . . , Xn−d)

Problem md grows very fast, e.g., with m = 8 symbols

and memory length d = 10, we need ≈ 109 distributions

Idea Use variable length contexts described by a context tree T
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Variable-Memory Markov Chains: An Example

Alphabet m = 3 symbols θ02000 Model:

Memory length d = 5 θ02001 context tree T

θ02002

Each past string Xn−1, Xn−2, . . .
...

corresponds to a unique context ...
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θ022Parameters: θ = {θs ; s ∈ T}
The distr of Xn given the past

is given by the distr on that leaf

E.g. P (Xn = 1|Xn−1 = 0, Xn−2 = 2, Xn−2 = 2, Xn−3 = 1, . . .) = θ022(1)
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Variable-Memory Representation: Advantages

; Parsimony E.g. above with memory length 5

instead of 35 = 243 conditional distributions, only need to specify 13

; For an alphabet of size m and memory depth d there are md contexts

⇒ potentially huge savings

; Determining the underlying

context tree of an empirical

time series is of great scientific

and engineering interest
1

2
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VMMCs: Computation of the Likelihood

Notation. 1. Models ≡ Trees

2. Xj
i denotes the block (Xi, Xi+1, . . . , Xj)

3. θ = {θs; s ∈ T} for all the parameters (given T )

4. X = X−d+1, . . . X0, X1, . . . , Xn all the observed data

5. Suppress dependence of the likelihood on the past X0
−d+1

The likelihood of X = Xn
1 is:

f (X) = f (Xn
1 |X0

−d+1, θ, T ) =

n∏
i=1

P (Xi|X i−1
i−d) =

∏
s∈T

∏
j∈A

θs(j)
as(j)

where the count vectors as are defined by:

as(j) = # times letter j follows context s in Xn
1



Bayesian Modelling for VMMCs

Prior on models Indexed family of priors on trees T of depth ≤ D

Given m,D, for each β ∈ (0, 1) :

π(T ) = πD(T ;β) = α|T |−1β|T |−LD(T )

with α = (1− β)1/(m−1); |T | = # leaves of T ; LD(T ) = # leaves at D

[Lemma: This is OK]
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Prior on models Indexed family of priors on trees T of depth ≤ D

Given m,D, for each β ∈ (0, 1) :

π(T ) = πD(T ;β) = α|T |−1β|T |−LD(T )

with α = (1− β)1/(m−1); |T | = # leaves of T ; LD(T ) = # leaves at D

[Lemma: This is OK]

Prior on parameters Given a context tree T , the parameters θ = {θs; s ∈ T}
are taken to be independent

with each π(θs|T ) ∼ Dirichlet(1
2
, 1
2
, . . . , 1

2
)

Likelihood Given a model T and parameters θ = {θs; s ∈ T}
the likelihood of X = Xn

1 is as above:

f(X) = f(Xn
1 |X

0
−D+1, θ, T ) =

∏
s∈T

∏
j∈A

θs(j)
as(j)
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Bayesian Inference for VMMCs

Given. Data X = X−D+1, . . . X0, X1, . . . , Xn

Max model depth D

The “one and only” goal of Bayesian inference

Determination of the posterior distributions:

π(θ, T |X) =
π(T )π(θ|T )f (X|θ, T )

f (X)

and π(T |X) =

∫
θ f (X|θ, T )π(θ|T ) dθ π(T )

f (X)
Main obstacle

Determination of the mean marginal likelihood:

f (X) =
∑
T

π(T )

∫
θ

f (X|θ, T )π(θ|T ) dθ

; the number of models in the sum grows doubly exponentially in D



Computation of the Marginal Likelihood

Given the structure of the model, it is not surprising

that the marginal likelihoods f (X|T ) can be computed explicitly

Lemma The marginal likelihood f (X|T ) can be computed as

f (X|T ) =
∏
s∈T

Pe(as)

where Pe(as) =

∏m−1
j=0 [(1/2)(3/2) · · · (as(j)− 1/2)]

(m/2)(m/2 + 1) · · · (m/2 + Ms − 1)

with the count vectors as as before and Ms = as(0) + · · ·+ as(m− 1)



Computation of the Marginal Likelihood

Given the structure of the model, it is not surprising

that the marginal likelihoods f (X|T ) can be computed explicitly

Lemma The marginal likelihood f (X|T ) can be computed as

f (X|T ) =
∏
s∈T

Pe(as)

where Pe(as) =

∏m−1
j=0 [(1/2)(3/2) · · · (as(j)− 1/2)]

(m/2)(m/2 + 1) · · · (m/2 + Ms − 1)

with the count vectors as as before and Ms = as(0) + · · ·+ as(m− 1)

What perhaps should be surprising is that the entire

mean marginal likelihood f (X) =
∑

T π(T )f (X|T )

can also be computed effectively
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The Mean Marginal Likelihood Algorithm (MMLA)

Given. Data X = X−D+1, . . . , X0, X1, X2, . . . , Xn [The algorithm

Alphabet size m Maximum depth D formerly known

Prior parameter β as CTW]

4 1. [Tree. ] Construct a tree with nodes corresponding to all contexts

of length 1, 2, . . . , D contained in X

4 2. [Estimated probabilities. ] At each node s compute the vectors as
[as(j) = # times letter j follows context s in Xn

1 ]

and the probabilities Pe,s = Pe(as) as in the Lemma

4 3. [Weighted probabilities. ] At each node s compute

Pw,s =

{
Pe,s, if s is a leaf

βPe,s + (1− β)
∏

j∈A Pw,sj, o/w



The MMLA Computes the Mean Marginal Likelihood

Theorem

The weighted probability Pw,λ given by the MMLA at the root λ

is exactly equal to the mean marginal likelihood of the data X:

Pw,λ = f (X) =
∑
T

π(T )

∫
θ

f (X|θ, T )π(θ|T ) dθ



The MMLA Computes the Mean Marginal Likelihood

Theorem

The weighted probability Pw,λ given by the MMLA at the root λ

is exactly equal to the mean marginal likelihood of the data X:

Pw,λ = f (X) =
∑
T

π(T )

∫
θ

f (X|θ, T )π(θ|T ) dθ

Note

The MMLA computes a “doubly exponentially hard” quantity

in O(n ·D2) time

The MMLA can be updated sequentially

This is one of the very few examples of nontrivial Bayesian models

for which the mean marginal likelihood is explicitly computable

probably the most complex/interesting one
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Maximum A Posteriori Probability Tree Algorithm (MAPT)

Given. Data X = X−D+1, . . . , X0, X1, X2, . . . , Xn [The algorithm

Alphabet size m Maximum depth D formerly known

Prior parameter β as CTM]

4 1. [Tree. ] and 4 2. [Estimated probabilities. ]

Construct the tree and compute as and Pe,s as before

4 3. [Maximal probabilities. ]

At each node s compute

Pm,s =

{
Pe,s, if s is a leaf

max{βPe,s, (1− β)
∏

j∈A Pm,sj}, o/w

4 4. [Pruning. ]

For each node s, if the above max is achieved

by the first term, then prune all its descendants



Theorem: The MAPT Computes the MAP Tree

Theorem

The (pruned) tree T ∗1 resulting from the MAPT procedure

has maximal a posteriori probability among all trees:

π(T ∗1 |X) = max
T
π(T |X) = max

T

{∫
θ f (X|θ, T )π(θ|T ) dθ π(T )

f (X)

}



Theorem: The MAPT Computes the MAP Tree

Theorem

The (pruned) tree T ∗1 resulting from the MAPT procedure

has maximal a posteriori probability among all trees:

π(T ∗1 |X) = max
T
π(T |X) = max

T

{∫
θ f (X|θ, T )π(θ|T ) dθ π(T )

f (X)

}

Note – as with the MMLA

The MAPT also computes a doubly exponentially hard quantity

in O(n ·D2) time

Again, one of the very few examples of nontrivial Bayesian models

for which the mode of the posterior is explicitly computable

probably the most complex/interesting one



Finding the k A Posteriori Most Likely Trees (k-MAPT)

4 1. [Construct full tree. ] 4 2. [Compute as and Pe,s. ]

4 3. [Matrix representation. ] Each node s contains a k ×m matrix Bs

Line i represents the ith best subtree starting at s

Either entire line consists of ∗ meaning “prune at s”

Or jth element describes which line of the j child of s to follow

Line i also contains the “maximal probab” P
(i)
m,s associated with ith subtree

4 4. [At each leaf s. ] Entire matrix Bs contains ∗’s and all P
(i)
m,s are = Pe,s

4 5. [At each internal node s. ]

Consider all km combinations of subtrees of the children of s

For each combination compute the associated maximal prob as in MAPT

Order the results by prob, keep the top k, describe them in the matrix Bs

4 6. [Bottom-to-top-to-bottom. ] Repeat (5.) recursively until the root

Starting at the root, read the top k trees



k-MAPT Finds the k A Posteriori Most Likely Trees

Theorem

The k trees T ∗1 , T
∗
2 , . . . , T

∗
k described recursively at the root

after the k-MAPT procedure

are the k a posteriori most likely models w.r.t.:

π(T |X) =

∫
θ f (X|θ, T )π(θ|T ) dθ π(T )

f (X)



k-MAPT Finds the k A Posteriori Most Likely Trees

Theorem

The k trees T ∗1 , T
∗
2 , . . . , T

∗
k described recursively at the root

after the k-MAPT procedure

are the k a posteriori most likely models w.r.t.:

π(T |X) =

∫
θ f (X|θ, T )π(θ|T ) dθ π(T )

f (X)

Note

The complexity of k-MAPT is O(n ·D2 · km) in both time and space

This is one of the very few examples of nontrivial Bayesian models

for which the area near the mode of the posterior is explicitly identifiable

certainly the most complex/interesting one
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5th order VMMC data X−D+1, . . . , X0, X1, X2, . . . , Xn

Alphabet size m = 3

VMMC with d = 5 as in the example

Data length n = 10000 samples

MAPT Find MAP models with max depth D = 1, 2, 3, . . . , β = 1/2

; D = 5: space of more than 1024 models

; D = 10: space of more than 105900 models



Experimental results: MAP model for a 5th Order Chain

5th order VMMC data X−D+1, . . . , X0, X1, X2, . . . , Xn

Alphabet size m = 3

VMMC with d = 5 as in the example

Data length n = 10000 samples

MAPT Find MAP models with max depth D = 1, 2, 3, . . . , β = 1/2

; D = 5: space of more than 1024 models

; D = 10: space of more than 105900 models

1

2

0

1

2

0 1

2

0

D = 1 D = 2 D = 3



MAP model for a 5th Order Chain (cont’d)

5th order VMMC data X−D+1, . . . , X0, X1, X2, . . . , Xn

m = 3, d = 5, n = 10000

MAPT results with β = 1/2

1

2

0

1

2

0

D = 4 5 ≤ D ≤ 10: TRUE model
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Additional Results

(i) Model posterior probabilities π(T |X) =
π(T )

∏
s∈T Pe(as)

Pw,λ

for ANY model T , where Pw,λ = mean marginal likelihood

and Pe(as) = Pe,s are the estimated probabilities in MMLA

(ii) Posterior odds
π(T |X)

π(T ′|X)
=
π(T )

π(T ′)

∏
s∈T,s6∈T ′ Pe(as)∏
s∈T ′,s6∈T Pe(as)

.

for ANY pair of models T, T ′

(iii) Full conditional density of θ

π(θ|T,X) ∼
∏
s∈T

Dirichlet(as(0) + 1/2, as(1) + 1/2, . . . , as(m− 1) + 1/2)



k-MAPT models for the same 5th Order Chain

D = 10 ; more than 105900 models n = 10000, k = 3, β = 3/4
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0

π(T ∗1 |X) ≈ 0.368

π(T ∗1 ) ≈ 3.8× 10−6

π(T ∗1 |X)/π(T ∗2 |X) ≈ 6.29

π(T ∗1 |X)/π(T ∗3 |X) ≈ 8.82



k-MAPT for a 2nd Order, 8-Symbol Chain

2nd order VMMC: alphabet m = 8, memory d = 2, n = 50000 samples

k-MAPT: k = 3 top models, with D = 5, β = 1− 2−7, total ≈ 101233 models
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T ∗1 : true model, π(T ∗1 |X) ≈ 1, π(T ∗1 ) ≈ 10−7



Metropolis-within-Gibbs Exploration of the Posterior

Given. Data X = X−D+1, . . . , X0, X1, . . . , Xn

Parameters m,D, β

Run MAPT algorithm

Initialize: T (0) = T ∗1 and θ(0) ∼
∏

s∈T (0) Unif

Iterate: At each t:



Metropolis-within-Gibbs Exploration of the Posterior

Given. Data X = X−D+1, . . . , X0, X1, . . . , Xn

Parameters m,D, β

Run MAPT algorithm

Initialize: T (0) = T ∗1 and θ(0) ∼
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s∈T (0) Unif

Iterate: At each t:

4 [Metropolis proposal ] Given T (t) propose T ′
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Parameters m,D, β

Run MAPT algorithm
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4 [Metropolis step ] Define T (t + 1) by accepting or rejecting T ′

π(T ′|X)

π(T (t)|X)
=

π(T ′)

π(T (t))

∏
s∈T ′,s6∈T (t) Pe(as)∏
s∈T (t),s 6∈T ′ Pe(as)
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4 [Metropolis step ] Define T (t + 1) by accepting or rejecting T ′

π(T ′|X)

π(T (t)|X)
=

π(T ′)

π(T (t))

∏
s∈T ′,s6∈T (t) Pe(as)∏
s∈T (t),s 6∈T ′ Pe(as)

4 [Gibbs step ] Take θ(t + 1) ∼ sample from the full cond’al density∏
s∈T (t+1)

Dirichlet(as(0) + 1/2, as(1) + 1/2, . . . , as(m− 1) + 1/2)
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Data Price changes X on n = 22900 trading days

quantized to seven values



Experimental Results: Quantized S&P 500 Data

Data Price changes X on n = 22900 trading days

quantized to seven values

k-MAPT top k = 5 trees

with m = 7, D = 260, β = 0.95
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Total posterior of top 5 models ≈ 6%



MCMC Results on S&P 500 Data

After 106 iterations: Acceptance rate ≈ 45%, ≈ 340000 models visited
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MCMC Results on S&P 500 Data

After 106 iterations: Acceptance rate ≈ 45%, ≈ 340000 models visited
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MCMC Results on S&P 500 Data

After 106 iterations: Acceptance rate ≈ 45%, ≈ 340000 models visited
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[; Markov order estimation]



Outline of Theoretical Results

“Theorem 1” [BIC/MDL connection]

For every data string X of arbitrary length n, any initial context X0
−D+1

and any model T of depth no more than D with parameters θ

the mean marginal likelihood f (X) = f (Xn
1 |X0

−D+1) satisfies

log f (X) ≈ logP (X|θ, T )− |T |(m− 1)

2
log n

and this is in a strong sense best possible
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For every data string X of arbitrary length n, any initial context X0
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and any model T of depth no more than D with parameters θ

the mean marginal likelihood f (X) = f (Xn
1 |X0

−D+1) satisfies

log f (X) ≈ logP (X|θ, T )− |T |(m− 1)

2
log n

and this is in a strong sense best possible

“Theorem 2” The predictive distribution

f (Xn+1|Xn
−D+1) =

∑
T

∫
θ

f (Xn+1|Xn
−D+1, θ, T )︸ ︷︷ ︸

likelihood

π(θ, T |Xn
−D+1)︸ ︷︷ ︸

posterior

dθ

=
f (Xn+1

1 |X0
−D+1)

f (Xn
1 |X0

−D+1)

(i) can be computed online

(ii) converges to the true conditional at the fastest possible rate

(iii) achieves the minimax optimal risk in terms of log-loss



Outline of Theoretical Results

Theorem 3 [Asymptotic consistency]

For any ergodic VMMC {Xn} of depth no more than D

π(·, ·|X)
D−→ δ(T ∗,θ∗) a.s.
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Theorem 3 [Asymptotic consistency]

For any ergodic VMMC {Xn} of depth no more than D

π(·, ·|X)
D−→ δ(T ∗,θ∗) a.s.

Theorem 4 [Asymptotic normality]

For any ergodic VMMC {Xn} of depth no more than D and stationary

distribution π, suppose θ(n) ∼ π(·|Xn
−D+1, T

∗), and let θ̄(n) denote its mean.

Then θ̄(n) → θ∗ a.s. and
√
n
[
θ(n) − θ̄(n)

]
D−→ N(0, J) a.s.

[Let Θ∗s be the diagonal matrix with entries θ∗s(j), j ∈ A, and let Js denote

the m×m matrix Js = 1
π(s) [Θ∗s − (θ∗s)

t(θ∗s)]. Then J is the m|T ∗| ×m|T ∗|
block-diagonal matrix consisting of all m×m blocks Js]



A Large Data Set: Spike Trains

Data Single neuron spike train in frontal eye fields (FEF) area
located in the frontal cortex (Brodmann area 8)
of the primate (monkey) brain

Study FEF-V4 coupling during attention
FEF is responsible for saccadic and voluntary eye movement
Important role in the control of visual attention

MAPT With n ≈ 108 data points (ms resolution)

m = 2, β = 1/2 and depth D = 130

[MIT-NIH data: Gregoriou-Gotts-Zhou-Desimone Science (2012)]



A Large Data Set: Spike Trains

Data Single neuron spike train in frontal eye fields (FEF) area

Study FEF-V4 coupling during attention

MAPT With n ≈ 108 data points (ms resolution)

m = 2, β = 1/2 and depth D = 130

Resulting MAPT model

Number of leaves: |T | = 1054

Max depth: D = 130

Max number of 1s/context: 3 (and two contexts with 4)

Max number consecutive 1s: 2 (chemistry)

Departure from simple renewal at 30ms

; 1st/2nd order Markov renewal structure



Extensions, Applications

; Results on real (and some “big”) data

� Satellite image data

� Genetics (DNA/RNA)

� Neuroscience

� Financial data

� Wind and rainfall measurements

� Whale/dolphin/bird song data

Applications

Model selection Estimation Change-point detection
Segmentation Anomaly detection Markov order estimation
Filtering Prediction Entropy estimation
Causality testing Compression Content recognition


