A Differential View of Network Capacity

International Zurich Seminar - February 2018

Michelle Effros

California Institute of Technology

This work supported in part by NSF grant #1527524.

Shannon took an "elementary" approach to network capacity.

To a large extent, the elementary approach persists in the literature.

We consider a differential approach.

Find the smallest set $\Delta(\mathcal{C})$ s.t. $\forall \mathcal{N}$ Capacity $(\mathcal{N} + \mathcal{C}) \subseteq \text{Capacity}(\mathcal{N}) + \Delta(\mathcal{C})$

The differential approach is applicable for any channel \mathcal{C} .

Find the smallest set $\Delta(\mathcal{C})$ s.t. $\forall \mathcal{N}$

Capacity(
$$\mathcal{N} + \mathcal{C}$$
) \subseteq Capacity(\mathcal{N}) + $\Delta(\mathcal{C})$

CAPACITY

$$\mathcal{N} = (p, S, D) : \text{Network}$$

p = Memoryless channel (noisy or noiseless)

$$S = \{s_1, \dots, s_k\} : s_i = \text{origin of source } i$$

Messages W_1, \ldots, W_k indep, uniform

$$D = \{D(s) : s \in S\}$$
: demand set

 $D(s) = \text{nodes that demand the source from node } s_{\text{@effros 2018}}$

CAPACITY

$$(R_1,\ldots,R_k)$$
 achievable

$$\Leftrightarrow$$
 \exists sequence of $((2^{nR_1}, \dots, 2^{nR_k}), n)$ codes with $P_e^{(n)} \to 0$ as $n \to \infty$

Capacity(\mathcal{N})

$$= \overline{\{(R_1,\ldots,R_k):(R_1,\ldots,R_k) \text{ achievable}\}}$$

We consider a differential approach.

Find the smallest set $\Delta(\mathcal{C})$ s.t. $\forall \mathcal{N}$ Capacity $(\mathcal{N} + \mathcal{C}) \subseteq \text{Capacity}(\mathcal{N}) + \Delta(\mathcal{C})$

What is the impact of each channel -- in the larger context in which it will be employed?

How much do we need to know about a channel to understand its differential impact?

Find the smallest set $\Delta(\mathcal{C})$ s.t. $\forall \mathcal{N}$

Capacity(
$$\mathcal{N} + \mathcal{C}$$
) \subseteq Capacity(\mathcal{N}) + $\Delta(\mathcal{C})$

Does a link's capacity determine its differential impact?

Yes! For any network \mathcal{N} and any point-to-point channels \mathcal{C} and \mathcal{C}' , if Capacity(\mathcal{C})=Capacity(\mathcal{C}')
then Capacity($\mathcal{N} + \mathcal{C}$) = Capacity($\mathcal{N} + \mathcal{C}'$)

[Koetter, Effros, Medard 2009, 2011]

Does a link's capacity determine its differential impact?

Yes! For any network \mathcal{N} and any point-to-point channels \mathcal{C} and \mathcal{C}' , if Capacity(\mathcal{C})=Capacity(\mathcal{C}')
then Capacity($\mathcal{N} + \mathcal{C}$) = Capacity($\mathcal{N} + \mathcal{C}'$)

[Koetter, Effros, Medard 2009, 2011]

Does channel capacity determine differential channel impact in general?

No! For any network \mathcal{N} and any channels \mathcal{C} and \mathcal{C}' , Capacity(\mathcal{C})=Capacity(\mathcal{C}')
does not imply Capacity($\mathcal{N} + \mathcal{C}$) = Capacity($\mathcal{N} + \mathcal{C}'$).

[Koetter, Effros, Medard 2009, 2011]

To begin, consider the impact of a wireline link in a network of wireline links.

Is Capacity
$$(\mathcal{N} + \delta) \subseteq \text{Capacity}(\mathcal{N}) + [0, \delta]^k$$
?

Is Capacity
$$(\mathcal{N} + \delta) \subseteq \text{Capacity}(\mathcal{N}) + [0, \delta]^k$$
?

The question remains unsolved in wireline networks:

[Jalali, Effros, Ho 2011, 2012, Langberg, Effros 2012, Lee, Langberg, Effros 2013]

- The impact of a link is bounded by its capacity in some networks:
 - if cut-set bounds are tight (e.g., single- & multi-source multicast)
 - for co-located sources, super-source networks, terminal edges
 - for linear codes, "separable" codes
 - in index coding.
- The same property holds in current outer bounds:
 - cut-set bounds
 - Generalized network sharing bounds [Kamath, Tse, Anantharam 2011]
 - Generalized Linear Programming (LP) bound [Yeung 1997, Song, Yeung 2003]
- No proof that this property always holds.
- No examples where this property fails.
- **Equivalence** to other problems (0- vs. ϵ -error, dep srcs, NC vs. IC, ...)

Wireline networks: Intuition

[Jalali, Effros, Ho 2011, 2012, Langberg, Effros 2012, Lee, Langberg, Effros 2013]

Only send source values that give the most common transmission across our connection.

The number of such transmissions supports rate $(R_1 - \delta, R_2 - \delta, R_3 - \delta)$

Challenge: This strategy may not always be possible.

What happens in networks containing wireless components?

Is Capacity
$$(\mathcal{N} + \delta) \subseteq \text{Capacity}(\mathcal{N}) + [0, \delta]^k$$
?

In prior literature, the benefit of any edge was bounded by the capacity of that edge.

Is Capacity
$$(\mathcal{N} + \delta) \subseteq \text{Capacity}(\mathcal{N}) + [0, \delta]^k$$
?

For general memoryless networks, the benefit of an edge can exceed its capacity.

[Noorzad, Effros, Langberg, Ho 2014]

Is Capacity
$$(\mathcal{N} + \delta) \subseteq \text{Capacity}(\mathcal{N}) + [0, \delta]^k$$
?

NO.

By how much can the benefit of an edge exceed its capacity?

[Noorzad, Effros, Langberg, Ho 2014]

Capacity
$$(\mathcal{N} + \delta) \subseteq \text{Capacity}(\mathcal{N}) + [0, f(\delta)]^k$$
?

NO!!! (for ANY polynomial f)

© Effros 2018

The benefit of an edge can FAR exceed its capacity!

[Noorzad, Effros, Langberg, Ho 2014]

Adding a δ -capacity link can increase the network capacity ALMOST EXPONENTIALLY in δ .

The benefit of an edge can FAR exceed its capacity!

[Noorzad, Effros, Langberg, Ho 2014]

$$p(y|x_1, x_2) = \begin{cases} 1(y = (x_1, x_2)) & \text{if } g(x_1, x_2) = 1\\ 1(y = E) & \text{if } g(x_1, x_2) = 0 \end{cases}$$

Proof (counter-example) [Noorzad, Effros, Langberg, Ho 2014]

$$G = \begin{bmatrix} g(1,1) & g(1,2) & \dots & g(1,M) \\ g(2,1) & g(2,2) & \dots & g(2,M) \\ \vdots & \vdots & \ddots & \vdots \\ g(M,1) & g(M,2) & \dots & g(M,M) \end{bmatrix}$$

$$p(y|x_1, x_2) = \begin{cases} 1(y = (x_1, x_2)) & \text{if } g(x_1, x_2) = 1\\ 1(y = E) & \text{if } g(x_1, x_2) = 0 \end{cases}$$

Set $\delta = 2 \log \log M$

$\exists G \text{ such that:}$

 $\exists \frac{M}{\log M \log \log M}$ -partition of \mathcal{X}_1 (\mathcal{X}_2) s.t. each "cell" contains a "1"

Ensures $\mathcal{C}(\mathcal{N} + \delta)$ large $(R_1 + R_2 = 2 \log M - O(\log \log M))$ ach)

Every sufficiently large sub-matrix has fraction $\geq 1 - \epsilon$ "0"s

Ensures $\mathcal{C}(\mathcal{N})$ small $(R_1 + R_2 < 1.25 \log M)$

The benefit of an edge can far exceed its capacity.

[Noorzad, Effros, Langberg, Ho 2014]

But this is an artificial example...

What happens in more realistic networks?

[Noorzad, Effros, Langberg 2015]

If
$$C(\mathcal{N} + \delta)|_{\delta = \infty} \supseteq C(\mathcal{N})$$
 AND

 $f(\delta)$ is the smallest function for which

$$C(\mathcal{N} + \delta) \subseteq C(\mathcal{N}) + [0, f(\delta)]^k$$

then $\frac{d}{d\delta} f(\delta)|_{\delta=0} = \infty$

© Effros 2018

If cooperation helps at all, then a little cooperation can help a LOT!

[Noorzad, Effros, Langberg 2015]

Can rate-0 cooperation ever help???

[Noorzad, Effros, Langberg 2016]

Surprisingly, at least in the case of maximal-error capacity, the answer is YES!

There exist networks where $f(\delta)$

is discontinuous at δ =0.

The curve can be discontinuous.*

[Noorzad, Effros, Langberg 2016]

^{*} In the max-error case.

Can 1 bit of cooperation ever help?

Can 1 bit of cooperation ever help?

[Langberg, Effros 2016]

YES!

There exists a network where

1 bit of cooperation
changes the maximal-error network capacity!

How can 1 bit of cooperation help???

[Langberg, Effros 2016]

© Effros 2018

Dueck MAC:

X_1	$\mid X_2 \mid$	Y
a	0	(a,0)
b	0	(b,0)
a	1	(c,1)
b	1	(c,1)
A	0	(C,0)
В	0	(C,0)
A	1	(A,1)
В	$\mid 1 \mid$	\mid (B,1)

						A 0 B 0 A 1 B 1	(C,0) (C,0) (A,1) (B,1)
+	1	2	•			6	7
U U	1	<u> </u>	<u> </u>	4	<u> </u>	O	
X_{1}	A	\mathbf{a}	В	В	b	\mathbf{A}	В

$_{1}, \iota$								
$X_{2,t}$	0	1	1	0	1	1	1	0
Y_t	(C,0)	(c,1)	(B,1)	(C,0)	(c,1)	(A,1)	(B,1)	(C,0)

\mathbf{Y}_t	(C,0)	(c,1)	(B,I)	(C,0)	(c,1)	(A,1)	(B,1)	(C,0)
$X_{1,t}$	A	a	В	В	b	A	В	A
Υ'	1	\bigcap	\bigcap	1	\bigcap	\bigcap	\bigcap	1

$X'_{2,t}$	1	0	0	1	0	0	0	1
Y_t	(A,1)	(a,0)	(C,0)	(B,1)	(b,0)	(C,0)	(C,0)	(A,1)

Dueck MAC:

X_1	X_2	Y
a	0	(a,0)
b	0	(b,0)
a	1	(c,1)
b	1	(c,1)
A	0	(C,0)
В	0	(C,0)
A	1	(A,1)
В	$\mid 1 \mid$	\mid (B,1)

t	1	2	3	4	5	6	7	8
$X_{1,t}$	A	a	В	В	b	A	В	A
$X_{2,t}$	0	1	1	0	1	1	1	0
Y_t	(C,0)	(c,1)	(B,1)	(C,0)	(c,1)	(A,1)	(B,1)	(C,0)
$X_{1,t}$	A	a	В	В	b	A	В	A
$\mathrm{X}_{2,t}'$	1	0	0	1	0	0	0	1

Dueck MAC:

X_1	X_2	Y
a	0	(a,0)
b	0	(b,0)
a	1	(c,1)
b	1	(c,1)
A	0	(C,0)
В	0	(C,0)
Α	1	(A,1)
В	$\mid 1 \mid$	(B,1)

t	1	2	3	4	5	6	7	8
$X_{1,t}$	A	\mathbf{a}	В	В	b	A	В	A
$X_{2,t}$	0	1	1	0	1	1	1	0
Y_t	(C,0)	(c,1)	(B,1)	(C,0)	(c,1)	(A,1)	(B,1)	(C,0)
			+			+	+	1
$X_{1,t}$	A	a	В	В	b	A	В	A
$X'_{2,t}$	1	0	0	1	0	0	0	1
Y_t	(A,1)	(a,0)	(C,0)	(B,1)	(b,0)	(C,0)	(C.0)	(A.1)

How can 1 bit of cooperation help???

$$\left(rac{R_{1,A}+R_{1,B}}{2},rac{R_{2,A}+R_{2,B}}{2}
ight)
ot\in\mathcal{C}(ext{Dueck})$$

Time steps 1,...,n

Time step n+1

Time steps n+2,...,2n+1

$$\left(rac{R_{1,A}+R_{1,B}}{2},rac{R_{2,A}+R_{2,B}}{2}
ight)
ot\in\mathcal{C}(ext{Dueck})$$

(k+1) bits can change the network capacity. Can 1 bit change network capacity?

Capacity(
$$\mathcal{N}^+$$
) \neq Capacity(\mathcal{N})

$$C(\mathcal{N}^+) = C(\mathcal{N}_{k+1}) \supseteq C(\mathcal{N}_k) \supsetneq \cdots \supseteq C(\mathcal{N}_1) \supseteq C(\mathcal{N}_0) = C(\mathcal{N})$$

© Effros 2018

Even 1 bit can yield a discontinuity!

[Langberg, Effros 2016]

^{*} In the max-error case.

Is a discontinuity possible in the average error case???

[Noorzad, Effros, Langberg, 2018]

Summary

- The differential view of network capacity bounds the impact of a channel in a larger network.
- For wireline networks, it is unknown whether the benefit of a single edge can ever exceed its capacity.
 - In some cases, it provably cannot.
 - Current outer bounds likewise suggest that it cannot.
 - The question is related to other interesting unsolved questions.
- For networks with wireless connections, the impact of a single edge can FAR exceed its capacity.
 - Gap can be large.
 - Slope can be infinite.
 - Rate-0 links can help.
 - Even 1 bit can help!