Physical Unclonable Functions Coded Modulation, Shaping, and Helper Data Schemes

Robert F.H. Fischer

Many Thanks to my Co-Workers and Colleagues:

Sven Müelich

Holger Mandry

Maurits Ortmanns

Institute of Communications Engineering

Institute of Microelectronics

Institute of Microelectronics

This work was supported in parts by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under grands FI 982/15-1 and OR 245/16-1

Introduction

Introduction

Physical Unclonable Functions (PUFs):

- physical hardware object
- unique, unpredictable, and uncontrollable due to random physical processes at the time of production
- cannot be duplicated or cloned, i.e., are physically unclonable

Modes of Operation:

- "strong" PUFs: the response is dependent on a challenge
- "weak" PUFs: a unique fingerprint is delivered (considered here) maybe better: physical unclonable "object" / physical unclonable "fingerprint"

Observation and Approach:

- repeated PUF readout vary (slightly) due to variations in temperature, supply voltage, aging, ...
- readout has to be stabilized channel coding has to be applied

Introduction (II)

Procedure: fuzzy extractors / secure sketch

Initialization / Enrollment

based on the PUF readout *helper data (HD) is generated*

the helper data must not reveal any information about the PUF readout and may be public

Reproduction

based on the noisy PUF readout and the helper data a stable (binary) word / key is generated

Applications:

- derivation of cryptographic keys / inherent key storage the PUF is private and the helper data may be public
- identification / countermeasure against product piracy the PUF is public and the helper data is private

[DRS'07]

Introduction (III)

Research Areas and Directions:

Microelectronics	Computer Science
more stable PUF architectures, efficient implementation of coding schemes,	protocols, security, attacks,
e.g., [MHV'12], [HBO'16], [MHK ⁺ '19], [KFPW'22]	e.g., [GCDD'02], [DRS'07], [MSSS'12], [Teb'22]
Information Theory	Coding Theory
<i>Information Theory</i> fundamental procedures and limits,	Coding Theory design suited channel coding schemes

- Classical Binary PUFs and Problem Statement
- Soft-Output PUFs
- Coded Modulation and Shaping
- Helper Data for Improved Decoding
- FPGA Implementation

Classical Binary PUFs

Ring Oscillator PUFs

Ring Oscillator: ("silicon PUF")

- Ioop of an odd number of inverters (NOT gates)
- the circuit oscillates with a certain frequency actual value depends on uncontrollable variations within the manufacturing process

Classical Ring Oscillator PUF (ROPUF):

 \blacksquare sign of frequency difference $f_{\rm diff}$ is extracted

basic block for generating a single random variable — PUF node, PUF cell, or PUF unit

Notation: quantities over $\mathbb R$ are typeset as x, e, \ldots — quantities over $\mathbb F_2$ are typeset in Fraktur font; $\mathfrak x, \mathfrak x, \ldots$

[GCDD'02]

Extracted Information / Entire PUF:

n independent PUF nodes constitute the PUF

- PUF readout vector $\mathbf{\mathfrak{x}} = [\mathbf{\mathfrak{x}}_1, \dots, \mathbf{\mathfrak{x}}_n] \in \mathbb{F}_2^n$
- \mathfrak{x}_i uniformly and independently distributed
- lacksquare each PUF instance has a unique readout $m{x}$

Classical PUFs (II)

Extracted Information:

• each PUF instance has a unique *reference readout* \mathfrak{x}_{puf}

 $[\mathbf{\mathfrak{x}}_{\mathrm{puf},1}|\mathbf{\mathfrak{x}}_{\mathrm{puf},2}|\mathbf{\mathfrak{x}}_{\mathrm{puf},3}|$ $[\mathbf{\mathfrak{x}}_{\mathrm{puf},i}|$ $[\mathbf{\mathfrak{x}}_{\mathrm{puf},n}]$

Problem:

- repeatedly requested readouts will vary (slightly) due to variations in temperature, supply voltage, aging, ...
- instability is traditionally modeled by a binary symmetric channel (BSC)

$$\mathfrak{y}_{\mathrm{puf}} = \mathfrak{x}_{\mathrm{puf}} \oplus \mathfrak{e}_{\mathrm{puf}}$$

error pattern \mathbf{e}_{puf} — usual assumption: bit error probability $p_{BSC} \approx 0.14$

employ channel coding

 \blacksquare However: the reference PUF readout ${m y}_{
m puf}$ is not a valid code word

randomness in the readout process

randomness in the manufacturing process

e.g., [MHV'12], [MPMHS'14], [PMBHS'15]

Classical PUFs (III)

Initialization / Enrollment Phase:

- \blacksquare the *reference PUF readout* ${m y}_{puf}$ is measured
- choice: binary channel code (rate k/n)
 - binary message word ${f m}$ of length k the corresponding code word ${f c}$ is generated
- helper data is calculated as code-offset algorithm

$$\mathfrak{h}\stackrel{\scriptscriptstyle{\mathsf{def}}}{=}\mathfrak{c}\oplus\mathfrak{x}_{\mathrm{puf}}$$

e.g., [JW'99], [LT'03], [DRS'04]

visualization

Classical PUFs (IV)

Reproduction Phase:

noisy PUF readout

$$\mathfrak{y}_{\mathrm{puf}} = \mathfrak{x}_{\mathrm{puf}} \oplus \mathfrak{e}_{\mathrm{puf}} = \mathfrak{c} \oplus \mathfrak{h} \oplus \mathfrak{e}_{\mathrm{puf}}$$

application of helper data

$$\mathfrak{y}\stackrel{\scriptscriptstyle{\mathsf{def}}}{=}\mathfrak{y}_{\mathrm{puf}}\oplus\mathfrak{h}\ =\ \mathfrak{c}\oplus\mathfrak{e}_{\mathrm{puf}}$$

standard (hard-decision) channel decoding reveals the message \mathfrak{m}

Classical PUFs (V)

Model of the PUF:

visualization

 \blacksquare randomness in the manufacturing process — ${\mathfrak x}_{\rm puf}$

 \blacksquare randomness in the readout process — $\mathfrak{e}_{\mathrm{puf}}$

Imagination of a Digital Communication Scheme:

- \blacksquare randomly selected message ${\bf \mathfrak{m}}$ of length k
- \blacksquare encoding and application of helper data gives $\pmb{\mathfrak{x}}_{puf}$
- secret (key) to be retrieved: message m

Security of PUFs

Requirements: (I(\cdot ; \cdot): mutual information)

 \blacksquare the PUF (reference) readout ${\pmb{\mathfrak x}}_{\rm puf}$ and the helper data ${\pmb{\mathfrak h}}$ are known

 \Rightarrow the message **m** has to be decodable

 $I(\mathfrak{m}; \{\mathfrak{x}_{puf}, \mathfrak{h}\}) = k$

 $I(\mathbf{m}; \mathbf{\mathfrak{x}}_{puf}) = 0$

lacksquare only the helper data $m{\mathfrak{h}}$ is known

no leakage must occur

no leakage must occur

 $I(\mathbf{m}; \mathbf{h}) = 0$

 \blacksquare the readout ${\mathfrak x}_{\rm puf}$ is a *one-time pad* for the codeword ${\mathfrak c}$ and vice versa

Interpretation

Channel Coding Problem:

generation of and communication via *helper data*

Source Coding Problem:

Slepian–Wolf / Wyner–Ziv encoding

e.g., [GISK'19]

message m as additional randomness

Numerical Examples

Word Error Ratio (WER) over the BSC Error Probability:

Problem Statement

Channel Coding:

- **Situation:** vast majority of the literature is on **binary** codes and **hard-decision** decoding
- *However:* PUFs extract randomness from analog sources

Improvements: (the number *n* of PUF nodes is fixed)

- \blacksquare longer messages extract more than one bit of entropy per readout symbol (k>n)
 - multi-valued PUFs / coded modulation

higher reliability

utilize the soft output / advanced helper schemes

e.g., [TSB⁺'06], [BNCF'14], [GI'14], [WHGS'16] [ZPK⁺'16], [CBD⁺'17], [IOK⁺'18], [MHM⁺20]

e.g., [MTV'09], [MPSB'19], [MMOF'21], [KFPW'22]

Soft-Output PUFs

Ring Oscillator PUFs

Soft-Decision Decoding:

• the real-valued frequency difference f_{diff} is utilized directly — reliability information

measurement campaign at the Institute of Microelectronics using FPGA ROPUFs

Ring Oscillator PUFs

Soft-Decision Decoding:

• the real-valued frequency difference $f_{\rm diff}$ is utilized directly — reliability information

AWGN model

$$oldsymbol{y}_{ ext{puf}} = oldsymbol{x}_{ ext{puf}} + oldsymbol{e}_{ ext{puf}}$$

- reference/nominal readout $x_{
 m puf}$ and error $e_{
 m puf}$ are approx. zero-mean Gaussian distributed
- scaling factor c such that $\sigma_x^2 = 1$ (per element)
- error variance: $\sigma_{e}^{2} < 0.01$

Soft-Output PUFs

Model of the PUF:

we *imagine* a digital communication scheme — soft-decision

random mapping — mapping bits to regions

- randomness at the transmitter
- q_i determines the region the actual number $x_{puf,i}$ is drawn randomly according to a Gaussian pdf
- individual but fixed for each PUF node (instance and position i in the codeword)

Soft-Output PUFs

Model of the PUF:

• we *imagine* a digital communication scheme — soft-decision

Initialization:

- determination of the actual region q
- \blacksquare encoding of the message to ${\mathfrak c}$
- calculation of helper data
 - c: desired region
- \Rightarrow $\mathfrak{h} = \mathfrak{c} \oplus \mathfrak{q}$
- q: actual region

Soft-Output PUFs (II)

Soft-Decision Decoding:

decoding metric: *log-likelihood ratio* (LLR)

LLR =
$$\log\left(\frac{\Pr\{\mathfrak{c}=\mathfrak{o}|y_{\text{puf}}\}}{\Pr\{\mathfrak{c}=\mathfrak{1}|y_{\text{puf}}\}}\right) = \log\left(\frac{f_{\mathcal{Y}}(y_{\text{puf}}|\mathfrak{c}=\mathfrak{o})}{f_{\mathcal{Y}}(y_{\text{puf}}|\mathfrak{c}=\mathfrak{1})}\right)$$

Numerical Examples

Capacities over the Signal-to-Noise Ratio (in dB):

- BPSK
- Gaussian readout

Numerical Examples (II)

Word Error Ratio (WER) over the Signal-to-Noise Ratio (in dB):

Coded Modulation and Shaping

Situation

Binary Soft-Output PUF:

generation of and communication via helper data

Challenge:

- increase code rate / size of the message \mathfrak{m} extract more than one bit per PUF node
 - *employ higher-order modulation / coded modulation*

Regions and Schemes

• regions \mathcal{R}_{ρ}

natural labeling:

$${\mathfrak c}$$
 label ${\mathfrak c} = [{\mathfrak c}_1 {\mathfrak c}_0]$

- region number
$$ho = [\mathfrak{c}_1 \mathfrak{c}_0]_2$$

• for L = 0.675 the regions are drawn with the same probability

⇒ 4-ary uniform scheme

Regions and Schemes

PUF Readout and Regions:

Model of the PUF:

• we *imagine* a digital communication scheme

mapping bits to regions — the actual number is drawn randomly according to a Gaussian pdf

suited helper data scheme required

Regions and Schemes (II)

PUF Readout and Regions:

Regions and Schemes (III)

Multilevel Encoder and Multistage Decoding: here: M = 8, $\mu = \log_2(M)$

scheme for uniform signaling

Regions and Schemes (III)

Multilevel Encoder and Multistage Decoding: here: M = 8, $\mu = \log_2(M)$

scheme for uniform signaling

specification by *codematrix* (code of length *n*)

Regions and Schemes (III)

Multilevel Encoder and Multistage Decoding: here: M = 8, $\mu = \log_2(M)$

■ scheme with trellis shaping (highest level has rate 1/2)

specification by *codematrix* (code of length *n*)

Numerical Examples

Capacities over the Signal-to-Noise Ratio (in dB):

uniform:

– highest level: $R_{\mu-1} = 0.5$, hard decision

Helper Data Scheme

First Approach: generate a valid codeword in signal space

- employ permutation and sign flip
 - easy to implement
 - large number of bits required to store the helper data: $pprox n(1 + \log_2(n))$
 - <u>– no pe</u>rfect match possible

Helper Data Scheme

First Approach: generate a valid codeword in signal space

- employ permutation and sign flip
 - easy to implement
 - large number of bits required to store the helper data: $pprox n(1+\log_2(n))$
 - <u>– no perfect match possible</u>

Better Approach: adapt LLR calculation

- employ a *conversion* of the region labels
 - applied element-wise
 - small number of bits required to store the helper data: $n \, \log_2(M)$
 - ideal LLR calculation

[FM'22]

Helper Data Scheme (II)

Calculation of Helper Data: uniform signaling

visualization

	$\mathfrak{c}_{\mu-1,1}$	$\mathfrak{c}_{\mu-1,2}$	$\mathfrak{c}_{\mu-1,3}$		$\mathfrak{c}_{\mu-1,i}$	 $\mathfrak{c}_{\mu-1,n}$
$\mathfrak{C} =$				•		:
	$\mathfrak{c}_{0,1}$	$\mathfrak{c}_{0,2}$	$\mathfrak{c}_{0,3}$		$\mathfrak{c}_{0,i}$	 $\mathfrak{c}_{0,n}$

/ \	$\mathfrak{q}_{\mu-1,1}$	$\mathfrak{q}_{\mu-1,2}$	$\mathfrak{q}_{\mu-1,3}$		$\mathfrak{q}_{\mu-1,i}$		$\mathfrak{q}_{\mu-1,n}$	
(\cdot)	$\mathfrak{Q} =$	•	•		•	•	•	••••
		$\mathfrak{q}_{0,1}$	$\mathfrak{q}_{0,2}$	$\mathfrak{q}_{0,3}$		$\mathbf{q}_{0,i}$		$\mathfrak{q}_{0,n}$

• $[\mathbf{c}_{\mu-1,i} \cdots \mathbf{c}_{0,i}]_2$: desired codesymbols $[\mathbf{q}_{\mu-1,i} \cdots \mathbf{q}_{0,i}]_2$: obtained by quantization $\mathcal{Q}(\cdot)$

нр

Helper Data Scheme (II)

Calculation of Helper Data: uniform signaling

visualization

- $[\mathbf{c}_{\mu-1,i} \cdots \mathbf{c}_{0,i}]_2$: desired codesymbols $[\mathbf{q}_{\mu-1,i} \cdots \mathbf{q}_{0,i}]_2$: obtained by quantization $\mathcal{Q}(\cdot)$
- helper data: $\mathfrak{H} = \mathfrak{C} \oplus \mathfrak{Q}$

Helper Data Scheme (II)

Calculation of Helper Data: uniform signaling

visualization

Security: it can be shown

- message can be decoded when knowing the PUF readout and the helper data
- no leakage when knowing the PUF readout only
- no leakage when knowing the helper data only

Helper Data Scheme (III)

Calculation of Helper Data: shaped signaling

visualization

Problem:

region numbers not uniformly distributed — leakage

Helper Data Scheme (III)

Calculation of Helper Data: shaped signaling

visualization

Problem:

region numbers not uniformly distributed — leakage

Helper Data Scheme (III)

Calculation of Helper Data: shaped signaling

visualization

Problem:

region numbers not uniformly distributed — leakage

Solution:

•
$$\mathfrak{c}_{\mu-1,i}\oplus\mathfrak{q}_{\mu-1,i+o}$$
 independent on $[\mathfrak{c}_{\mu-2,i}\ \cdots\ \mathfrak{c}_{0,i}]$

Optimum Decoding

LLR Calculation: conversion helper scheme

- PUF readout $oldsymbol{y}_{ ext{puf}} = [y_{ ext{puf},1},\ldots,y_{ ext{puf},n}]$
- \blacksquare LLR for label bit $\mathfrak{c}_{0,i}$

$$LLR(\mathbf{c}_{0,i}) = \log\left(\frac{\sum_{\forall \mathbf{q}, \mathbf{q}_{0,i}=\mathbf{o} \oplus \mathbf{h}_{0,i}} \Delta Q(y_{\text{puf},i}, \mathcal{R}_{\mathbf{q}})}{\sum_{\forall \mathbf{q}, \mathbf{q}_{0,i}=\mathbf{1} \oplus \mathbf{h}_{0,i}} \Delta Q(y_{\text{puf},i}, \mathcal{R}_{\mathbf{q}})}\right)$$

definition

$$\Delta \mathbf{Q}(y, \mathcal{R}_{\mathbf{c}}) \stackrel{\text{def}}{=} \mathbf{Q}(D L_{\rho} - F y) - \mathbf{Q}(D L_{\rho+1} - F y)$$

with
$$\mathcal{R}_{\mathbf{c}} = \mathcal{R}_{[\mathfrak{c}_{\mu-1} \cdots \mathfrak{c}_0]}$$
 — lower limit L_{ρ} ; upper limit $L_{\rho+1}$, $\rho = [\mathfrak{c}_{\mu-1} \cdots \mathfrak{c}_0]_2$
 $F \stackrel{\text{def}}{=} \frac{1}{\sqrt{1+\sigma_e^2}\sigma_e}$, $D \stackrel{\text{def}}{=} \frac{\sqrt{1+\sigma_e^2}}{\sigma_e}$
 $Q(x) \stackrel{\text{def}}{=} \int_x^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}} dz$ (complementary Gaussian integral function)

Numerical Examples

Word Error Ratio (WER) over the Signal-to-Noise Ratio (in dB):

Helper Data for Improved Decoding

Situation

Coded Modulation / Shaping for PUFs:

generation of and communication via helper data

helper data enables decoding in the first place

Improvement:

- recently, a two-metric helper data scheme was proposed
 - two possible quantizers are available at reconstruction (uncoded case)
 - reference PUF readout determines which quantizer should be used (per PUF node)
 - these binary flags establish the helper data

⇒ generalization to *M*-ary coded modulation

[DGS'19], [TKDP'21]

Regions for Uniform Signaling:

Regions for Uniform Signaling:

■ region limits for *M*-ary *S*-metric scheme

$$\tilde{L}_{\rho,s} = \tilde{L}_{\rho} + \frac{\tilde{L}_{\rho+1} - \tilde{L}_{\rho}}{S} s, \qquad \begin{array}{c} \rho = 0, \dots, M-1 \\ s = 0, \dots, S \end{array}$$

Initialization Phase:

- quantization of the reference PUF readout x_{puf} (limits $L_{\rho,s}$) \Rightarrow region ρ and subregion s
- total helper data $\mathcal{H} = \{\mathfrak{H}, s\}$ $\Rightarrow n(\log_2(M) + \log_2(S))$ bits

Regions for Uniform Signaling:

Security:

due to construction

and

$$\Pr\{s\} = \frac{1}{S}$$

$$p_{\rho,s} = \Pr\{x \in \mathcal{R}_{\rho,s}\} = \Pr\{x \in \mathcal{R}_{\rho}\}\frac{1}{S}$$

- \Rightarrow subregion number s is uniformly distributed
- \Rightarrow region number ρ and subregion number s are independent

> no leakage

Regions for Shaping:

Security:

due to construction

and
$$\Pr\{s\} = \frac{1}{S}$$
$$p_{\rho,s} = \Pr\{x \in \mathcal{R}_{\rho,s}\} = \Pr\{x \in \mathcal{R}_{\rho}\}\frac{1}{S}$$

- \Rightarrow subregion number *s* is uniformly distributed
- \Rightarrow region number ρ and subregion number s are independent

> no leakage

Constellations

- Active Constellation: M = 4
 - conventional

Numerical Examples

Word Error Ratio (WER) over the Signal-to-Noise Ratio (in dB):

- PUF nodes: 1024
 mess. length: 1536
 rate: R = 1.5 [$\frac{\text{bit}}{\text{node}}$]
- Polar code
 - codelength n = 1024
- MLC
- conversion helper scheme
- S = 1, 2, 4, 8, 16

Numerical Examples (II)

Side Information [bit/node] over Required Signal-to-Noise Ratio (in dB):

FPGA Implementation

FPGA Implementation

Specification:

- ROPUFs implemented on XILINX FPGAs at the Institute of Microelectronics
- 22 instances (evaluation boards) available
- each comprising 3800 ROs
- $\blacksquare n = 1024$ disjoint pairs of ROs randomly selected
- temperature from $-10 \,^{\circ}\text{C}$ to $50 \,^{\circ}\text{C}$ (in steps of $10 \,^{\circ}\text{C}$)
- reference readout \boldsymbol{x}_{ref} : average of 10 readouts at 20 °C
- 10,000 readouts per PUF instance and temperature (in total 70,000 readouts per PUF instance)
- schemes
 - 4-ary uniform
 - 8-ary uniform
 - 8-ary shaping

Summary and Outlook

Summary and Outlook

Error Correction for PUFs:

- utilizing the analog readout is rewarding
- PUF model: digital transmission with randomness at the transmitter
- design of coded modulation and shaping techniques
- design of suited helper data

Further Directions:

- here: Gaussian model for signal and error
- here: (silicon) PUF as hardware device
- here: practical designs (coded modulation / helper data)

- ⇒ increase in rate per PUF node
- ⇒ increase in reliability

- ⇒ adaptation to real-world data
- ⇒ application to "channel PUFs"
- fundamental finite-length limits

- [AC'93] R. Ahlswede, I. Csiszar. Common Randomness in Information Theory and Cryptography. I. Secret Sharing. *IEEE Transactions on Information Theory*, vol. 39, no. 4, pp. 1121–1132, July 1993.
- [BH'13] C. Böhm , M. Hofer. *Physical Unclonable Functions in Theory and Practice*. Springer Science+Business Media, New York, 2013.
- [BNCF'14] L. Bossuet, X. T. Ngo, Z. Cherif, V. Fischer. A PUF Based on a Transient Effect Ring Oscillator and Insensitive to Locking Phenomenon. *IEEE Transactions on Emerging Topics in Computing*, vol. 2, no. 1, pp. 30–36, March 2014.
- [CBD⁺'17] K.-H. Chuang, E. Bury, R. Degraeve, B. Kaczer, G. Groeseneken, I. Verbauwhede, D. Linten. Physically Unclonable Function Using CMOS Breakdown Position. In *IEEE Int. Reliability Physics Symposium (IRPS)*, Monterey, CA, USA, pp. 4C-1.1–4C-1.7, 2017.
 - [CN'00] I. Csiszar, P. Narayan. Common Randomness and Secret Key Generation with a Helper. *IEEE Transactions on Information Theory*, vol. 46, no. 2, pp. 344–366, Mar. 2000.
- [DGS'19] J.-L. Danger, S. Guilley, A. Schaub. Two-Metric Helper Data for Highly Robust and Secure Delay PUFs. In *IEEE International Workshop on Advances in Sensors and Interfaces (IWASI)*, pp. 184–188, 2019.
- [DRS'07] Y. Dodis, L. Reyzin, A. Smith. Fuzzy Extractors: A Brief Survey of Results from 2004 to 2006. In *Security with Noisy Data: On Private Biometrics, Secure Key Storage and Anti-Counterfeiting*, pp. 79–99, Editors P. Tuyls, B. Skoric, T. Kevenaar, Springer, London, 2007.
- [DRS'04] Y. Dodis, L. Reyzin, A. Smith. Fuzzy Extractors: How to Generate Strong Keys from Biometrics and other Noisy Data. In: C. Cachin, J.L. Camenisch (eds) *Advances in Cryptology – EUROCRYPT 2004*, Lecture Notes in Computer Science, vol 3027, Springer, Berlin, Heidelberg, pp. 523–540, 2004.
- [FM'22] R.F.H. Fischer, S. Müelich. Coded Modulation and Shaping for Multivalued Physical Unclonable Functions. *IEEE Access*, vol. 10, pp. 99178–99194, 2022.
- [Fis'24] R.F.H. Fischer. Helper Data Schmes for Coded Modulation and Shaping in Physical Unclonable Functions. *Submitted*. 2024.
- [GCDD'02] B. Gassend, D. Clarke, M. van Dijk, S. Devadas. Silicon Physical Random Functions. Proceedings of the ACM Computer and Communications Security Conference, pp. 148–160, Nov. 2002.
 - [GI'14] O. Günlü, O. İşcan. DCT Based Ring Oscillator Physical Unclonable Functions. In *EEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, Florence, Italy, pp. 8198–8201, 2014.
- [GISK'19] O. Günlü, O. Iscan, V. Sidorenko, G. Kramer. Code Constructions for Physical Unclonable Functions and Biometric Secrecy Systems. *IEEE Transactions on Information Forensics and Security*, vol. 14, no. 11, pp. 2848–2858, Nov. 2019.
- [GFBP'23] O. Günlü, R.F. Schaefer, H. Boche, H.V. Poor. Secure and Private Distributed Source Coding With Private Keys and Decoder Side Information. *IEEE Transactions on Information Forensics and Security*, vol. 18, pp. 3803–3816, 2023.

- [HBL⁺'17] G. He, J.-C. Belfiore, I. Land, G. Yang, X. Liu, Y. Chen, R. Li, J. Wang, Y. Ge, R. Zhang, W. Tong. Beta-Expansion: A Theoretical Framework for Fast and Recursive Construction of Polar Codes. In *IEEE Global Communications Conference*, Singapore, 2017.
- [HBO'16] A. Herkle, J. Becker, M. Ortmanns. Exploiting Weak PUFs from Data Converter Non-Linearity E.g. A Multibit CT ΔΣ Modulator. *IEEE Transactions on Circuits and Systems I: Regular Papers*, vol. 63, no. 7, pp. 994–1004, Juli 2016.
- [HMBO'19] A. Herkle, H. Mandry, J. Becker, M. Ortmanns. In-depth Analysis and Enhancements of RO-PUFs with a Partial Reconfiguration Framework on Xilinx Zynq-7000 SoC FPGAs. In *Int. Symposium on Hardware Oriented Security and Trust (HOST)*, pp. 238–247, 2019.
 - [IW'09] T. Ignatenko, F.M.J. Willems. Biometric Systems: Privacy and Secrecy Aspects. *IEEE Transactions on Information Forensics and Security*, vol. 4, no. 4, pp. 956–973, Dec. 2009.
 - [IOK⁺'18] V. Immler, J. Obermaier, M. König, M. Hiller, G. Sigl. B-TREPID: Batteryless Tamper-Resistant Envelope with a PUF and Integrity Detection. In *IEEE Int. Symposium on Hardware Oriented Security and Trust (HOST)*, Washington, DC, USA, pp. 49–56. 2018.
 - [JW'99] A. Juels, M. Wattenberg. A Fuzzy Commitment Scheme. In ACM Conference on Computer and Communications Security, pp. 28–36, Nov. 1999.
- [KFPW'22] C. Kestel, C. Frisch, M. Pehl, N. Wehn. Towards More Secure PUF Applications: A Low-Area Polar Decoder Implementation. In *IEEE International System-on-Chip Conference (SOCC)*, Belfast, United Kingdom, 2022.
 - [LT'03] J.-P. Linnartz, P. Tuyls. New Shielding Functions to Enhance Privacy and Prevent Misuse of Biometric Templates. In: J. Kittler, M.S. Nixon (eds) *Audio- and Video-Based Biometric Person Authentication*, Lecture Notes in Computer Science, vol. 2688, Springer, Berlin, Heidelberg, pp. 393–402, 2003.
- [MTV'09] R. Maes, P. Tuyls, I. Verbauwhede. A Soft Decision Helper Data Algorithm for SRAM PUFs. In *IEEE International Symposium on Information Theory*, Seoul, Korea (South), pp. 2101–2105, 2009.
- [MHV'12] R. Maes, A. Van Herrewege, I. Verbauwhede. PUFKY: A Fully Functional PUF-based Cryptographic Key Generator. In: E. Prouff, P. Schaumont, P. (eds) *Cryptographic Hardware and Embedded Systems (CHES), Lecture Notes in Computer Science*, vol 7428. Springer, Berlin, Heidelberg. 2012.
- [Mae'13] R. Maes. *Physically Unclonable Functions: Constructions, Properties and Applications*. Springer Science & Business Media, 2013.
- [MHK⁺'19] H. Mandry, A. Herkle, L. Kürzinger, S. Müelich, J. Becker, R.F.H. Fischer, M. Ortmanns. Modular PUF Coding Chain with High-Speed Reed-Muller Decoder. In *IEEE International Symposium on Circuits and Systems (ISCAS)*, Sapporo, Japan, Mai 2019.
- [MHM⁺20] H. Mandry, A. Herkle, S. Müelich, J. Becker, R.F.H. Fischer, M. Ortmanns. Normalization and Multi-Valued Symbol Extraction from RO-PUFs for Enhanced Uniform Probability Distributions. *IEEE Transactions on Circuits and Systems II: Express Briefs*, vol. 67, no. 12, pp. 3372–3376, Dec. 2020.
- [Mau'93] U.M. Maurer. Secret Key Agreement by Public Discussion from Common Information. *IEEE Transactions on Information Theory*, vol. 39, no. 3, pp. 733–742, May 1993.

- [MSSS'12] D. Merli, D. Schuster, D. Stumpf, G. Sigl. Side Channel Analysis of PUFs and Fuzzy Extractors. In: J.M. McCune, B. Balacheff, A. Perrig, A.R. Sadeghi, A. Sasse, Y. Beres (eds) *International Conference on Trust and Trustworthy Computing, Lecture Notes in Computer Science*, vol. 6740. Springer, Berlin, Heidelberg, 2011.
- [MPMHS'14] S. Müelich, S. Puchinger, M. Bossert, M. Hiller, G. Sigl. Error Correction for Physical Unclonable Functions Using Generalized Concatenated Codes. In *International Workshop on Algebraic and Combinatorical Coding Theory*, 2014.
 - [MPSB'19] S. Müelich, S. Puchinger, V. Stukalov, M. Bossert. A Channel Model and Soft-Decision Helper Data Algorithms for ROPUFs. In *International ITG Conference on Systems, Communications and Coding (SCC)*, Rostock, Germany, 2019.
 - [Müe'19] S. Müelich. *Channel Coding for Hardware-Intrinsic Security*. Ph.D. Dissertation, Universität Ulm, 2019.
- [MMOF'21] S. Müelich, H. Mandry, M. Ortmanns, R.F.H. Fischer. A Multilevel Coding Scheme for Multi-Valued Physical Unclonable Functions. *IEEE Trans. Inf. Forensics Security*, vol. 16, pp. 3814–3827, 2021.
- [PRTG'02] R. Pappu, B. Recht, J. Taylor, N. Gershenfeld. Physical one-way functions" (PDF). Science, vol. 297, no. 5589, pp. 2026–2030, Sep. 2002.
- [PMBHS'15] S. Puchinger, S. Müelich, M. Bossert, M. Hiller, G. Sigl. On Error Correction for Physical Unclonable Functions. In *ITG Conference on Systems, Communications and Coding (SCC)*, Hamburg, Germany, 2015.
 - [SN'00] A.-R. Sadeghi, D. Naccache. *Towards Hardware-Intrinsic Security*. Springer, Berlin, Heidelberg, 2010.
 - [TKDP'21] L. Tebelmann, U. Kühne, J.-L. Danger, M. Pehl. Analysis and Protection of the Two-metric Helper Data Scheme. Cryptology ePrint Archive, Paper 2021/830, 2021. In: S. Bhasin, F. De Santis (eds) *Constructive Side-Channel Analysis and Secure Design*, Lecture Notes in Computer Science, vol. 2910, Springer, Cham, pp. 279–302, 2021.
 - [Teb'22] L. Tebelmann. *Side-Channel Analysis and Countermeasures for Physical Unclonable Functions*. Ph.D. Thesis, Technische Universität München, 2023.
 - [LLB'13] C. Ling, L. Luzzi, M.R. Bloch. Secret Key Generation from Gaussian Sources Using Lattice Hashing. In *IEEE International Symposium on Information Theory*, Istanbul, Turkey, pp. 2621–2625, 2013.
 - [TSB⁺'06] P. Tuyls, G.-J. Schrijen, B. Škorić, J. Van Geloven, N. Verhaegh, R. Wolters. Read-Proof Hardware from Protective Coatings. In *Int. Workshop on Cryptographic Hardware and Embedded Systems*, pp. 369–383, 2006.
- [WHGS'16] O. Willers, C. Huth, J. Guajardo, H. Seidel. MEMS Gyroscopes as Physical Unclonable Functions. In ACM SIGSAC Conference on Computer and Communications Security, pp. 591–602, 2016.
- [ZPK⁺'16] S.S. Zalivaka, A.V. Puchkov, V.P. Klybik, A.A. Ivaniuk, C.-H. Chang. Multi-Valued Arbiters for Quality Enhancement of PUF Responses on FPGA Implementation. In *IEE Asia and South Pacific Design Automation Conference (ASP-DAC)*, Macao, China, pp. 533–538, 2016.