

OPTICAL NETWORKING BEYOND WDM SPATIAL MULTIPLEXING AND MIMO FOR THE PETABIT ERA

Peter J. Winzer Optical Transmission Systems and Networks Research Bell Labs, Alcatel-Lucent, USA

ACKNOWLEDGMENT

Bell Labs S.Chandrasekhar A.R.Chraplyvy C.R.Doerr R.-J.Essiambre G.J.Foschini A.H.Gnauck **H.Kogelnik G.Kramer** X.Liu S.Randel **G.**Raybon **R.Ryf** R.W.Tkach

Optical Fiber Solutions D.DiGiovanni J.Fini R.Lingle D.Peckham T.F.Taunay B.Zhu

Sumitomo Electric M.Hirano Y.Yamamoto T.Sasaki

AND MANY OTHERS

AT THE SPEED OF IDEAS[™]

Traffic evolution in data networks

AT THE SPEED OF IDEAS™

COPYRIGHT © 2011 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

HUMAN-DRIVEN TRAFFIC GROWTH

Human desire to communicate in a multi-media manner

Huge *transport capacities* (especially for non-cacheable real time apps)

MACHINE-DRIVEN TRAFFIC GROWTH

Amdahl's rule of thumb

1 Floating point operation (Flop) triggers ~1 Byte/s of transport

Cloud services couple network traffic to exponential growth of processor power

The role of optical transmission technologies

AT THE SPEED OF IDEAS™

COPYRIGHT © 2011 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

OPTICAL NETWORKS: WORKHORSE OF THE INTERNET

Objectives:

Increase per-wavelength interface rates (client and line side) Increase per-fiber aggregate capacities (line side) Alcatel·Lucent

HIGH-SPEED OPTICAL INTERFACE EVOLUTION

- From direct (envelope) detection to coherent (field) detection
- Polarization multiplexed 16-QAM at 448 Gb/s demonstrated

AT THE SPEED OF IDEAS[™]

Alcatel Lucent

- From direct (envelope) detection to coherent (field) detection
- Polarization multiplexed 16-QAM at 448 Gb/s demonstrated
- 112-Gbit/s coherent interfaces commercially available since June 2010

SCALING INTERFACES TO TERABIT ETHERNET

THE SCALING OF WAVELENGTH-DIVISION MULTIPLEXING

~10 Terabit/s WDM systems are now commercially available ~100 Terabit/s WDM systems have been demonstrated in research Growth of WDM system capacities has noticeably slowed down since ~2000

Fiber nonlinearities and the "nonlinear Shannon limit"

AT THE SPEED OF IDEAS™

COPYRIGHT © 2011 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

WHY IS AN OPTICAL FIBER NONLINEAR ?

- Core diameter ~8 mm
- Cladding diameter ~125 mm
- Light is kept within the core (total internal reflection)

```
Megawatt / cm<sup>2</sup> optical intensities n_2 = n_{2,0} + n_{2,2} P_{opt} + ...
(Kerr effect)
```

Leads to *nonlinear distortions* over hundreds of kilometers

PHYSICAL PHENOMENA AT PLAY

A = A(z,t) ... Optical field propagating in the fiber's transverse mode

THE NONLINEAR SHANNON LIMIT

Increasing the signal power (i.e. the SNR) creates signal distortions from fiber nonlinearity, eventually limiting system performance

AN LOWER BOUND ESTIMATE FOR THE SHANNON LIMIT

- Assume ring constellations
- Deterministic signal back-propagation to remove (most of the) channel memory
- Numerical solution of nonlinear Schrödinger equation
 Numerical statistics

SOME EXAMPLE RESULTS

Note: Capacity maximum occurs at fairly high SNRs

R.-J. Essiambre et al., Phys. Rev. Lett. (2008) or J. Lightwave Technol. (2010) •• Alcatel · Lucent 🥢 AT THE SPEED OF IDEAS[™]

REALITY CHECK: WHERE ARE WE EXPERIMENTALLY ?

Spatial multiplexing: The next frontier

AT THE SPEED OF IDEAS™

COPYRIGHT © 2011 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

DIMENSIONS FOR MODULATION AND MULTIPLEXING

Current WDM products use all dimensions *but space*

TWO OPTIONS TO REACH OUR 2016 CAPACITY GOAL

COMPARISON OF REQUIRED TRANSPONDER HARDWARE

N₁: Number of TX/RX in high-SE, multiply regenerated system

AT THE SPEED OF IDEAS[™]

COMPARISON OF REQUIRED TRANSPONDER HARDWARE

AT THE SPEED OF IDEAS™

Alcatel·Lucent

COMPARISON OF REQUIRED TRANSPONDER HARDWARE

Spatial multiplexing: The integration challenge

AT THE SPEED OF IDEAS[™]

COPYRIGHT © 2011 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

NEED INTEGRATION FOR ECONOMIC SUSTAINABILITY

Deploying *M* spatial paths is better than using multiple regenerators

<u>But:</u> M systems cost M times as much & consume M times the energy Cost/bit (or energy/bit) remains constant

Integration is key to scale space-division multiplexed systems

Integrated transponders, Integrated amplifiers, Multi-mode or Multi-core fiber

Alcatel
 Lucent

INTEGRATED 7-CORE MULTI-MODE INTERCONNECT

[B. G. Lee et al., IEEE Photonics Society Summer Topicals, 2010]

Fiber coupled to VCSEL array for 100-m interface at 120 Gb/s

INTEGRATED 7-CORE SINGLE-MODE RECEIVER

7-CORE FIBER: LOW LOSS AND LOW CROSSTALK

SPATIAL MULTIPLEXING SETS FIRST CAPACITY RECORD

LONG DISTANCES AND HIGH SPECTRAL EFFICIENCIES

WDM/SDM Transmission of 10 x 128-Gb/s PDM-QPSK over 2688-km 7-Core Fiber with a per-Fiber Net Aggregate

ULTIMATELY, INTEGRATION WILL LEAD TO CROSSTALK

(Caveat: MIMO in optical has different boundary conditions from wireless)

Integrated transponders, Integrated amplifiers, Multi-mode or Multi-core fiber

6 SPATIAL MULTIPLEXING USING MIMO

AT THE SPEED OF IDEAS™

COPYRIGHT © 2011 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

MIMO-SDM IN FIBER – DIFFERENCES TO WIRELESS

- Potential addressability of *all* propagation modes (*complete set*)
- "Perturbed unitary" channel (mode-dependent loss)
- Fiber nonlinearity (likely to set per-mode peak-power constraints)
- High reliability requirements (99.999%), low outage probabilities (10⁻⁵)

SNR

З

Alcatel Lucent

4x4

3x3

- Distributed noise
- TX feedback almost always impossible • RX
- Nonlinear MIMO signal processing ?

DISTRIBUTED NOISE LOADING

In optics, noise loading is usually distributed over propagation (e.g., on a "per-span" or "per-segment" basis)

Spatial noise correlation

 $\mathbf{R}_{\boldsymbol{n}} = \langle \boldsymbol{n}\boldsymbol{n}^{\dagger} \rangle = \left(N_1 \mathbf{H}_K \cdots \mathbf{H}_3 \mathbf{H}_2 \mathbf{H}_2^{\dagger} \mathbf{H}_3^{\dagger} \cdots \mathbf{H}_K^{\dagger} + N_2 \mathbf{H}_K \cdots \mathbf{H}_3 \mathbf{H}_3^{\dagger} \cdots \mathbf{H}_K^{\dagger} + \dots + N_{K-1} \mathbf{H}_K \mathbf{H}_K^{\dagger} + N_K \mathbf{I}_M \right)$

If segment matrices are unitary: $R_n = \sum_{i=1}^K N_i I_M = N_0 I_M$

[Winzer and Foschini, Optics Express, 2011] AT THE SPEED OF IDEAS[™]

MODE-DEPENDENT LOSS

Outage probabilities for M = 16 modes, K = 64 segments Mode-dependent loss MDL, per segment Noise loading at receiver Distributed noise loading probability 0-2 $MDL_{i [dB]} = 5$ 2 Dutage 0.5 10-4 0.4 0.6 8.0 Capacity (C/M) Noise loading at receiver is worse than distributed noise loading A per-segment MDL of 1 dB only reduces capacity by <5%Alcatel · Lucent AT THE SPEED OF IDEAS™ COPYRIGHT © 2011 ALCATEL-LUCENT. ALL RIGHTS RESERVED

THE FIRST 6x6 OPTICAL MIMO EXPERIMENT

- All guided modes are **selectively** launched and coherently detected (otherwise: **System outage**)
- Modes are **strongly coupled** during propagation in the fiber
- **Digital signal processing** decouples received signals

[R. Ryf et al., OFC 2011; S. Randel et al., Optics Express 2011] Alcatel
 Lucent AT THE SPEED OF IDEAS™

6 6 ADAPTIVE MIMO EQUALIZER STRUCTURE

 Crosstalk between 3 cores with 2 polarizations each can be compensated using a linear 6 6 MIMO equalizer

IMPULSE RESPONSE MATRIX FOR 96-km 6-MODE FEW-MODE FIBER

- The impulse response was characterized for all 6 outputs as function of all 6 inputs
- Strong coupling is observed within the LP₀₁ and the LP₁₁ mode
- Weaker coupling is observed between the LP₀₁ and LP₁₁ mode

Ryf et. al., J. Lightwave Technol., 2012

A GLIMPSE INTO AN OPTICAL MIMO-SDM LAB

AT THE SPEED OF IDEAS™

COPYRIGHT © 2011 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

SOME FURTHER READING

Single-mode fiber capacity limit

• R.-J. Essiambre et al., "Capacity Limits of Optical Fiber Networks," J. Lightwave Technol. 28, 662 (2010).

MIMO-SDM capacity scaling

- P. J. Winzer and G. J. Foschini, "MIMO Capacities and Outage Probabilities in Spatially Multiplexed Optical Transport Systems," Optics Express (2011).
- P. J. Winzer "Energy-efficient optical transport capacity scaling through spatial multiplexing," Photon. Technol. Lett. **23**, 851 (2011).

First MIMO-SDM experiments

- R. Ryf et al., "Mode-division multiplexing over 96 km of few-mode fiber using coherent 6x6 MIMO processing," J. Lightwave Technol. **30**, 521 (2012).
- S. Randel et al., "6 x 56-Gb/s Mode-Division Multiplexed Transmission over 33-km Few-Mode Fiber Enabled by 66 MIMO Equalization," Optics Express (2011).

Overview on globally ongoing optical MIMO efforts

- G. Li, X. Liu, "Focus Issue: Space Multiplexed Optical Transmission," Opt. Ex. **19** 16574 (2011).
- T. Morioka et al. "Enhancing optical communications with brand new fibers," IEEE Comm. Mag. 50, s31 (2012).
- P. J. Winzer, "Optical Networking Beyond WDM," IEEE Photon. J. (2012).

AT THE SPEED OF IDEAS™

----- Alcatel Lucent 💋

44 COPYRIGHT © 2011 ALCATEL-LUCENT. ALL RIGHTS RESERVED.